Influence of Electrohydrodynamics on the Drying Characteristics and Volatile Components of Ginger
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Instruments and Equipment
2.3. Test Methods
2.4. Determination of Water Content
2.5. Determination of Drying Rate
2.6. Rehydration Rate
2.7. Shrinkage
2.8. Effective Diffusion Coefficient of Ginger Water
2.9. Color Analysis
2.10. Infrared Spectral Analysis
2.11. Volatile Components
2.12. Statistical Analysis
3. Results and Discussion
3.1. Effect of Different Voltage Levels on the Water Content of Ginger Slices
3.2. Effect of Different Drying Voltage on Drying Rate of Ginger Slices
3.3. Effective Diffusion Coefficient of Moisture
3.4. Rehydration and Shrinkage
3.5. Color Difference Analysis
3.6. Infrared Spectral Analysis of Ginger
3.7. Protein Secondary Structure of Ginger
3.8. Volatile Components
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.J.; Liu, Y.A.; Luo, D.; Ma, Y.Z.; Zhang, J.; Li, M.X.; Yao, L.; Shi, X.E.; Liu, X.R.; Yang, K.H. Ginger for health care: An overview of systematic reviews. Complement. Ther. Med. 2019, 45, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, I.; Chin, N.L. Antioxidant properties of dried ginger (Zingiber officinale Roscoe) var. (Bentong). Foods 2023, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Shimpy; Kumar, M. Advancements in ginger drying technologies. J. Stored Prod. Res. 2023, 100, 102058. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, M. Experimental ginger drying by a novel mixed-mode vertical solar dryer under partial and fully loaded conditions. Innov. Food Sci. Emerg. 2024, 95, 103736. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Wong, S.K.; Lim, K.K.; Tan, S.P.; Lianto, F.S.; Yong, M.Y. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem. 2009, 113, 166–172. [Google Scholar] [CrossRef]
- Osae, R.; Essilfie, G.; Alolga, R.N.; Bonah, E.; Ma, H.L.; Zhou, C.S. Drying of ginger slices-evaluation of quality attributes, energy consumption, and kinetics study. J. Food Process Eng. 2020, 43, e13348. [Google Scholar] [CrossRef]
- Gümüsay, O.A.; Borazan, A.A.; Ercal, N.; Demirkol, O. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 2015, 173, 156–162. [Google Scholar] [CrossRef]
- Moses, J.A.; Norton, T.; Alagusundaram, K.; Tiwari, B.K. Novel drying techniques for the food Industry. Food Eng. Rev. 2014, 6, 43–55. [Google Scholar] [CrossRef]
- Singh, A.; Orsat, V.; Raghavan, V. A comprehensive review on electrohydrodynamic drying and high-voltage electric field in the context of food and bioprocessing. Dry. Technol. 2012, 30, 1812–1820. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A.; Xanthakis, E. The principles of high voltage electric field and its application in food processing: A review. Food Res. Int. 2016, 89, 48–62. [Google Scholar] [CrossRef]
- Elmizadeh, A.; Shahedi, M.; Hamdami, N. Comparison of electrohydrodynamic and hot-air drying of the quince slices. Innov. Food Sci. Emerg. 2017, 43, 130–135. [Google Scholar] [CrossRef]
- Polat, A.; Izli, N. Determination of drying kinetics and quality parameters for drying apricot cubes with electrohydrodynamic, hot air and combined electrohydrodynamic-hot air drying methods. Dry. Technol. 2022, 40, 527–542. [Google Scholar] [CrossRef]
- Yang, J.; Bai, A.Z.; Zhao, C.R.; Wen, W. Effects of electrohydrodynamic drying and prefreezing pretreatment on physicochemical and functional properties of potato flours. J. Food Process. Preserv. 2021, 45, e15562. [Google Scholar] [CrossRef]
- Athari, B.; Nasirpour, A.; Saeidy, S.; Esehaghbeygi, A. Physicochemical properties of whipped cream stabilized with electrohydrodynamic modified cellulose. J. Food Process. Preserv. 2021, 45, e15688. [Google Scholar] [CrossRef]
- Han, B.Y.; Ding, C.J.; Jia, Y.; Wang, H.X.; Bao, Y.T.; Zhang, J.; Duan, S.S.; Song, Z.Q.; Chen, H.; Lu, J.L. Influence of electrohydrodynamics on the drying characteristics and physicochemical properties of garlic. Food Chem. X 2023, 19, 100818. [Google Scholar] [CrossRef]
- Bai, Y.X.; Yang, Y.X.; Huang, Q. Combined electrohydrodynamic (EHD) and vacuum freeze drying of sea cucumber. Dry. Technol. 2012, 30, 1051–1055. [Google Scholar] [CrossRef]
- Murali, S.; Kumar, K.S.; Alfiya, P.V.; Delfiya, D.S.A.; Samuel, M.P. Drying kinetics and quality characteristics of indian mackerel (Rastrelliger kanagurta) in solar-electrical hybrid dryer. J. Aquat. Food Prod. Technol. 2019, 28, 541–554. [Google Scholar] [CrossRef]
- Rong, Y.T.; Xie, J.L.; Yuan, H.B.; Wang, L.L.; Liu, F.Q.; Deng, Y.L.; Jiang, Y.W.; Yang, Y.Q. Characterization of volatile metabolites in Pu-erh teas with different storage years by combining GC-E-Nose, GC-MS, and GC-IMS. Food Chem. X 2023, 18, 100693. [Google Scholar] [CrossRef]
- Xi, L.J.; Zhang, J.; Wu, R.X.; Wang, T.; Ding, W. Characterization of the volatile compounds of zhenba bacon at different process stages using GC-MS and GC-IMS. Foods 2021, 10, 2869. [Google Scholar] [CrossRef]
- Johnson, J.B.; Mani, J.S.; White, S.; Brown, P.; Naiker, M. Pungent and volatile constituents of dried Australian ginger. Curr. Res. Food Sci. 2021, 4, 612–618. [Google Scholar] [CrossRef]
- Ding, S.H.; An, K.J.; Zhao, C.P.; Li, Y.; Guo, Y.H.; Wang, Z.F. Effect of drying methods on volatiles of Chinese ginger (Zingiber officinale Roscoe). Food Bioprod. Process. 2012, 90, 515–524. [Google Scholar] [CrossRef]
- Liu, Z.L.; Xie, L.; Zielinska, M.; Pan, Z.L.; Wang, J.; Deng, L.Z.; Wang, H.; Xiao, H.W. Pulsed vacuum drying enhances drying of blueberry by altering micro-, ultrastructure and water status and distribution. LWT-Food Sci. Technol. 2021, 142, 111013. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, S.; Dhar, A.; Powar, S. Optimization of pineapple drying based on energy consumption, nutrient retention, and drying time through multi-criteria decision-making. J. Clean. Prod. 2021, 292, 125913. [Google Scholar] [CrossRef]
- Chen, J.N.; Wang, J.H.; Ge, Y.H.; Ping, H.R.; Liu, W.X. Difference in quality and volatile flavor compounds of zingiber officinale roscoe with different drying methods. J. Food Qual. 2023, 2023, 5560410. [Google Scholar] [CrossRef]
- Buvaneswaran, M.; Natarajan, V.; Sunil, C.K.; Rawson, A. Effect of pretreatments and drying on shrinkage and rehydration kinetics of ginger Zingiber officinale. J. Food Process Eng. 2022, 45, e13972. [Google Scholar] [CrossRef]
- Ni, J.B.; Ding, C.J.; Zhang, Y.M.; Song, Z.Q.; Hu, X.Z.; Hao, T.J. Electrohydrodynamic drying of Chinese wolfberry in a multiple needle-to-plate electrode system. Foods 2019, 8, 152. [Google Scholar] [CrossRef]
- Feng, Y.B.; Wu, B.G.; Yu, X.J.; Yagoub, A.A.; Sarpong, F.; Zhou, C.S. Effect of catalytic infrared dry-blanching on the processing and quality characteristics of garlic slices. Food Chem. 2018, 266, 309–316. [Google Scholar] [CrossRef]
- Iranshahi, K.; Onwude, D.I.; Martynenko, A.; Defraeye, T. Dehydration mechanisms in electrohydrodynamic of-based foods. Food Bioprod. Process. 2022, 131, 202–216. [Google Scholar] [CrossRef]
- Muhamaruesa, N.H.M.; Kamarudin, K.H.; Isa, M.; Salim, N.S.M. Effect of drying temperature on the electrical impedance characteristics of ginger slices. Int. Agrophys. 2020, 34, 281–287. [Google Scholar] [CrossRef]
- Li, B.W.; Li, X.S.; Zhao, Y.X.; Xiong, X.F.; Ding, X.T. Characteristics and mathematical modeling of apple slice drying in an electrohydrodynamic system with a needle-plate electrode. J. Food Process Eng. 2022, 45, e14049. [Google Scholar] [CrossRef]
- Yang, X.X.; Xu, W.; Ding, J.; Zhao, Y. Theoretical and experimental studies on low-temperature adsorption drying of fresh ginger. J. Therm. Sci. 2006, 15, 71–78. [Google Scholar] [CrossRef]
- Zeng, S.Y.; Zhou, C.S.; Wang, B.; Xiao, H.W.; Lv, W.Q. Microwave Infrared Cooperative Drying of Ginger: Moisture Evolution, Structure Change, Physicochemical Properties, and Prediction Model. Food Bioprocess Technol. 2024, 17, 4632–4651. [Google Scholar] [CrossRef]
- Saxena, A.; Maity, T.; Raju, P.S.; Bawa, A.S. Degradation Kinetics of Colour and Total Carotenoids in Jackfruit (Artocarpus heterophyllus) Bulb Slices During Hot Air Drying. Food Bioprocess Technol. 2012, 5, 672–679. [Google Scholar] [CrossRef]
- Phoungchandang, S.; Saentaweesuk, S. Effect of two stage, tray and heat pump assisted-dehumidified drying on drying characteristics and qualities of dried ginger. Food Bioprod. Process. 2011, 89, 429–437. [Google Scholar] [CrossRef]
- Shaukat, M.N.; Fallico, B.; Nazir, A. Impact of air-drying temperatures on drying kinetics, physicochemical properties, and bioactive profile of ginger. Foods 2024, 13, 1096. [Google Scholar] [CrossRef]
- Polat, A.; Izli, N. Drying properties, color characteristics, microstructure, and modeling of ginger cubes dried using electrohydrodynamic, electrohydrodynamic-hot air, and hot air methods. Heat Mass Transf. 2024, 60, 665–675. [Google Scholar] [CrossRef]
- Carbonaro, M.; Nucara, A. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 2010, 38, 679–690. [Google Scholar] [CrossRef]
- Candogan, K.; Altuntas, E.G.; Igci, N. Authentication and Quality Assessment of Meat Products by Fourier-Transform Infrared (FTIR) Spectroscopy. Food Eng. Rev. 2021, 13, 66–91. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Zhu, H.T.; Chen, J.; Ao, Q. FTIR, XRD and SEM analysis of ginger powders with different size. J. Food Process. Preserv. 2015, 39, 2017–2026. [Google Scholar] [CrossRef]
- Jan, R.M.; Gani, A.; Dar, M.M.; Bhat, N.A. Bioactive characterization of ultrasonicated ginger(Zingiber officinale) and licorice (Glycyrrhiza glabra) freeze dried extracts. Ultrason. Sonochem. 2022, 88, 106048. [Google Scholar] [CrossRef]
- Duppeti, H.; Manjabhatta, S.N.; Kempaiah, B.B. Physicochemical, structural, functional and flavor adsorption properties of white shrimp (Penaeus vannamei) proteins as affected by processing methods. Food Res. Int. 2023, 163, 112296. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Dong, H.J.; Zhang, M.M.; Geng, W.; Wang, X. Identification of different degrees of processed ginger using GC-IMS combined with machine learning. J. Pharm. Anal. 2024, 14, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.X.; Guo, S.; Wang, J.M.; Yan, H.; Zhang, Z.Y.; Yang, J.; Duan, J.A. Comparison of Different Drying Methods on the Volatile Components of Ginger (Zingiber officinale Roscoe) by HS-GC-MS Coupled with Fast GC E-Nose. Foods 2022, 11, 1611. [Google Scholar] [CrossRef] [PubMed]
- Bartley, J.P.; Jacobs, A.L. Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale). J. Sci. Food Agric. 2000, 80, 209–215. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhang, Y. Research progress on chemical constituents of zingiber officinale roscoe. BioMed Res. Int. 2019, 2019, 5370823. [Google Scholar] [CrossRef]
- Elkhawas, Y.A.; Gad, H.A.; Lashkar, M.O.; Khinkar, R.M.; Wani, M.Y.; Khalil, N. Effect of sun drying on phytoconstituents and antiviral activity of ginger against low-pathogenic human coronavirus. Agronomy 2022, 12, 2763. [Google Scholar] [CrossRef]
- Bai, R.X.; Sun, J.R.; Qiao, X.G.; Zheng, Z.J.; Li, M.; Zhang, B. Hot air convective drying of ginger slices: Drying behaviour, quality characteristics, optimisation of parameters, and volatile fingerprints analysis. Foods 2023, 12, 1283. [Google Scholar] [CrossRef]
- Ren, Z.F.; Yu, X.J.; Yagoub, A.A.; Fakayode, O.A.; Ma, H.L.; Sun, Y.H.; Zhou, C.S. Combinative effect of cutting orientation and drying techniques (hot air, vacuum, freeze and catalytic infrared drying) on the physicochemical properties of ginger (Zingiber officinale Roscoe). LWT-Food Sci. Technol. 2021, 144, 111238. [Google Scholar] [CrossRef]
- An, K.J.; Zhao, D.D.; Wang, Z.F.; Wu, J.J.; Xu, Y.J.; Xiao, G.S. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 2016, 197, 1292–1300. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, C.J.; Lu, J.L.; Zhu, J.; Bai, W.; Guan, P.; Song, Z.Q.; Chen, H. Effect of electrohydrodynamic (EHD) drying on active ingredients, textural properties and moisture distribution of yam (Dioscorea opposita). Food Chem. X 2024, 23, 101622. [Google Scholar] [CrossRef]
- Martynenko, A.; Iranshahi, K.; Defraeye, T. Plate versus mesh collecting electrode for electrohydrodynamic (EHD) drying. Dry. Technol. 2022, 40, 2759–2769. [Google Scholar] [CrossRef]
- Martynenko, A.; Bashkir, I.; Kudra, T. The energy efficiency of electrohydrodynamic (EHD) drying of foods. Trends Food Sci. Technol. 2021, 118, 744–764. [Google Scholar] [CrossRef]
NO. | Compounds | CAS | Structural Formula | Ret. Index |
---|---|---|---|---|
1 | Tricyclo[2.2.1.0(2,6)]heptane, 1,7,7-trimethyl- | 508-32-7 | 729 | |
2 | 2-Heptanone | 110-43-0 | 853 | |
3 | 2-Heptanol | 543-49-7 | 879 | |
4 | Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)- | 3387-41-5 | 897 | |
5 | 5-Hepten-2-one, 6-methyl- | 110-93-0 | 938 | |
6 | .beta.-Pinene | 127-91-3 | 943 | |
7 | .alpha.-Pinene | 80-56-8 | 948 | |
8 | .beta.-Myrcene | 123-35-3 | 958 | |
9 | trans-.beta.-Ocimene | 3779-61-1 | 976 | |
10 | Octanal | 124-13-0 | 1005 | |
11 | 1,3-Cyclopentadiene, 1,3-bis(1-methylethyl)- | 123278-27-3 | 1012 | |
12 | 2-Nonanone | 821-55-6 | 1052 | |
13 | Eucalyptol | 470-82-6 | 1059 | |
14 | Linalool | 78-70-6 | 1082 | |
15 | Camphene | 79-92-5 | 1088 | |
16 | Nonanal | 124-19-6 | 1104 | |
17 | Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl- | 464-48-2 | 1121 | |
18 | Citronellal | 106-23-0 | 1125 | |
19 | Terpinen-4-ol | 562-74-3 | 1137 | |
20 | Fenchol | 1632-73-1 | 1138 | |
21 | 3-Cyclohexene-1-methanol, .alpha.,.alpha.4-trimethyl- | 98-55-5 | 1143 | |
22 | Cyclohexanol, 1-methyl-4-(1-methylethenyl)- | 7299-40-3 | 1158 | |
23 | Neral | 106-26-3 | 1174 | |
24 | Citronellol | 106-22-9 | 1179 | |
25 | Acetic acid, octyl ester | 112-14-1 | 1183 | |
26 | Benzenemethanol, .alpha.,.alpha.,4-trimethyl- | 1197-01-9 | 1197 | |
27 | Decanal | 112-31-2 | 1204 | |
28 | 2-Decenal, (Z)- | 2497-25-8 | 1212 | |
29 | Oxiranecarboxaldehyde, 3-methyl-3-(4-methyl-3-pentenyl)- | 16996-12-6 | 1215 | |
30 | 2-Nonanol, acetate | 14936-66-4 | 1218 | |
31 | Geraniol | 106-24-1 | 1228 | |
32 | 2-Undecanone | 112-12-9 | 1251 | |
33 | Isoaromadendrene epoxide | 0-00-0 | 1281 | |
34 | 6-Octen-1-ol, 3,7-dimethyl-, acetate | 150-84-5 | 1302 | |
35 | Myrtenyl acetate | 1079-01-2 | 1314 | |
36 | 2,6-Octadien-1-ol, 3,7-dimethyl-, acetate | 141-12-8 | 1352 | |
37 | Cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1-methylethyl)-, (3R-trans)- | 20307-84-0 | 1377 | |
38 | Aromandendrene | 489-39-4 | 1386 | |
39 | (E)-2-Decenyl acetate | 2497-23-6 | 1389 | |
40 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-, [1S-(1.alpha.,2.beta.,4.beta.)]- | 515-13-9 | 1398 | |
41 | trans-.alpha.-Bergamotene | 13474-59-4 | 1430 | |
42 | .gamma.-Elemene | 29873-99-2 | 1431 | |
43 | cis-.beta.-Farnesene | 28973-97-9 | 1440 | |
44 | Cyclohexene, 3-(1,5-dimethyl-4-hexenyl)-6-methylene- | 20307-83-9 | 1446 | |
45 | 1,3-Cyclohexadiene, 5-(1,5-dimethyl-4-hexenyl)-2-methyl- | 495-60-3 | 1451 | |
46 | .alpha.-Farnesene | 502-61-4 | 1458 | |
47 | 1-Isopropyl-4,7-dimethyl-1,2,3,5,6,8a-hexahydronaphthalene | 16729-01-4 | 1469 | |
48 | (R)-1-Methyl-4-(6-methylhept-5-en-2-yl)cyclohexa-1,4-diene | 28976-67-2 | 1480 | |
49 | .beta.-Bisabolene | 495-61-4 | 1500 | |
50 | trans-Sesquisabinene hydrate | 145512-84-1 | 1523 | |
51 | Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl- | 644-30-4 | 1524 | |
52 | Farnesene epoxide, E- | 83637-40-5 | 1540 | |
53 | Cyclohexanol, 3-ethenyl-3-methyl-2-(1-methylethenyl)-6-(1-methylethyl)- | 35727-45-8 | 1555 | |
54 | 6,10-Dodecadien-1-yn-3-ol, 3,7,11-trimethyl- | 2387-68-0 | 1572 | |
55 | (1R,4R)-1-methyl-4-(6-Methylhept-5-en-2-yl)cyclohex-2-enol | 58334-55-7 | 1591 | |
56 | 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-trimethyl-8-methylene- | 473-15-4 | 1593 | |
57 | 3(10)-Caren-4-ol, acetoacetic acid ester | 0-00-0 | 1605 | |
58 | 2,6,10-Dodecatrienal, 3,7,11-trimethyl- | 19317-11-4 | 1656 | |
59 | Bergamotol, Z-.alpha.-trans- | 88034-74-6 | 1673 | |
60 | 2,6,10-dodecatrien-1-ol, 3,7,11-trimethyl- | 3790-71-4 | 1710 | |
61 | Phenol, 5-(1,5-dimethyl-4-hexenyl)-2-methyl- | 30199-26-9 | 1744 | |
62 | geranyl-.alpha.-terpinene | 0-00-0 | 1962 | |
63 | (E)-1-(6,10-Dimethylundeca-5,9-dien-2-yl)-4-methylbenzene | 55968-43-9 | 2006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Ding, C.; Che, C.; Liu, L.; Lian, J.; Song, Z.; Qin, C. Influence of Electrohydrodynamics on the Drying Characteristics and Volatile Components of Ginger. Appl. Sci. 2024, 14, 10655. https://doi.org/10.3390/app142210655
Zhu J, Ding C, Che C, Liu L, Lian J, Song Z, Qin C. Influence of Electrohydrodynamics on the Drying Characteristics and Volatile Components of Ginger. Applied Sciences. 2024; 14(22):10655. https://doi.org/10.3390/app142210655
Chicago/Turabian StyleZhu, Jie, Changjiang Ding, Chuanqiang Che, Liqiang Liu, Junjun Lian, Zhiqing Song, and Chunxu Qin. 2024. "Influence of Electrohydrodynamics on the Drying Characteristics and Volatile Components of Ginger" Applied Sciences 14, no. 22: 10655. https://doi.org/10.3390/app142210655
APA StyleZhu, J., Ding, C., Che, C., Liu, L., Lian, J., Song, Z., & Qin, C. (2024). Influence of Electrohydrodynamics on the Drying Characteristics and Volatile Components of Ginger. Applied Sciences, 14(22), 10655. https://doi.org/10.3390/app142210655