Infrared Imaging System with a Local Polarization Channel for Target Detection
Abstract
:1. Introduction
2. Basic Theory
3. System Design
4. Imaging Simulation Results
4.1. Local Polarization Imaging
4.2. Dynamic Local Imaging
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Planinsic, G. Infrared Thermal Imaging: Fundamentals, Research and Applications. Eur. J. Phys. 2011, 32, 1431. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, L.; Chen, M.; Wang, T.; Wang, Z.; Wu, H. Super-resolution infrared imaging via multi-receptive field information distillation network. Opt. Lasers Eng. 2021, 145, 106681. [Google Scholar] [CrossRef]
- Abdel-Moati, H.; Morris, J.; Zeng, Y.; Corie, M.W.; Yanni, V.G. Near field ice detection using infrared based optical imaging technology. Opt. Laser Technol. 2018, 99, 402–410. [Google Scholar] [CrossRef]
- Harchanko, J.; Chenault, D.; Farlow, C.; Spradley, K. Detecting a surface swimmer using long wave infrared imaging polarimetry (Invited Paper). In Photonics for Port and Harbor Security; SPIE: Bellingham, WA, USA, 2005. [Google Scholar]
- Snik, F.; Craven-Jones, J.; Escuti, M.; Fineschi, S.; Harrington, D.; Martino, A.D.; Mawet, D.; Riedi, J.; Tyo, J.S. An overview of polarimetric sensing techniques and technology with applications to different research fields. In Polarization: Measurement, Analysis, and Remote Sensing XI; SPIE: Bellingham, WA, USA, 2014. [Google Scholar]
- Huang, K.; Fang, J.; Yan, M.; Wu, E.; Zeng, H. Wide-field mid-infrared single-photon upconversion imaging. Nat. Commun. 2022, 13, 1077. [Google Scholar] [CrossRef]
- Zhang, R.; Li, H.; Duan, K.; You, S.; Liu, K.; Wang, F.; Hu, Y. Automatic Detection of Earthquake-Damaged Buildings by Integrating UAV Oblique Photography and Infrared Thermal Imaging. Remote Sens. 2020, 12, 2621. [Google Scholar] [CrossRef]
- Kim, S.; Jang, G.-I.; Kim, S.; Kim, J. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images. Sensors 2018, 18, 996. [Google Scholar] [CrossRef] [PubMed]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef]
- Yang, M.; Xu, W.; Sun, Z.; Wu, H.; Tian, Y.; Li, L. Mid-wave infrared polarization imaging system for detecting moving scene. Opt. Lett. 2020, 45, 5884–5887. [Google Scholar] [CrossRef]
- Ou, K.; Yu, F.; Li, G.; Wang, W.; Miroshnichenko, A.E.; Huang, L.; Wang, P.; Li, T.; Li, Z.; Chen, X.; et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci. Adv. 2020, 6, eabc0711. [Google Scholar] [CrossRef]
- Tyo, J.S.; Goldstein, D.L.; Chenault, D.B.; Shaw, J.A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 2006, 45, 5453–5469. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Davis, J.; Balakrishnan, K.; Ibn-Elhaj, M.; Kroto, S.; Brock, N.; Pau, S. Polarization microscope using a near infrared full-Stokes imaging polarimeter. Opt. Express 2015, 23, 4357–4368. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Liu, Y.; He, C.; Wang, C.; Li, Y.; Zhang, Y. Analysis of infrared polarization properties of targets with rough surfaces. Opt. Laser Technol. 2022, 151, 108069. [Google Scholar] [CrossRef]
- Zhu, P.; Ding, L.; Ma, X.; Huang, Z. Fusion of infrared polarization and intensity images based on improved toggle operator. Opt. Laser Technol. 2018, 98, 139–151. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L. Infrared polarization and intensity image fusion method based on multi-decomposition LatLRR. Infrared Phys. Technol. 2022, 123, 104129. [Google Scholar] [CrossRef]
- Pezzaniti, J.L.; Chenault, D.B. A Division of Aperture MWIR Imaging Polarimeter. In Proceedings of the Polarization Science and Remote Sensing II, San Diego, CA, USA, 2–4 August 2005. [Google Scholar]
- Mu, T.; Zhang, C.; Li, Q.; Liang, R. Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters. Opt. Express 2015, 23, 10822–10835. [Google Scholar] [CrossRef]
- Martinez, T.; Wick, D.V.; Restaino, S.R. Foveated, wide field-of-view imaging system using a liquid crystal spatial light modulator. Opt. Express 2001, 8, 555–560. [Google Scholar] [CrossRef]
- Katz, J.I.; Hua, H. High-throughput multi-resolution foveated laparoscope for minimally invasive surgery. Biomed. Opt. Express 2022, 13, 3366–3379. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Hao, Q.; Cao, J.; Wang, Z.; Zhang, H.; Cheng, Y. Curved retina-like camera array imaging system with adjustable super-resolution fovea. Appl. Opt. 2021, 60, 1535–1543. [Google Scholar] [CrossRef]
- Niu, Y.; Chang, J.; Lv, F.; Shen, B.; Chen, W. Low-cost dynamic real-time foveated imager. Appl. Opt. 2017, 56, 7915–7920. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.; Liu, T.; Wu, Y.; Shi, G.; Wang, L. Internal and external stray radiation suppression for LWIR catadioptric telescope using non-sequential ray tracing. Infrared Phys. Technol. 2015, 71, 163–170. [Google Scholar] [CrossRef]
- Knulst, A.J.; Kunst, J.; Dankelman, J. Lightfield adaptable surgical luminaire concept. J. Med. Eng. Technol. 2019, 43, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-H.; Yuan, X.; Brady, D.J. Spatial light modulator based color polarization imaging. Opt. Express 2015, 23, 11912–11926. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.H. Polarized Light, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Andreou, A.G.; Kalayjian, Z.K. Polarization imaging: Principles and integrated polarimeters. IEEE Sens. J. 2002, 2, 566–576. [Google Scholar] [CrossRef]
EFL/mm | FOV/° | F# | Local Magnification | |
---|---|---|---|---|
Peripheral channel | 10 | 45 | F/2 | / |
Local polarization channel | 20 | 2.6 | F/4 | 2× |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Jiang, Z.; Niu, C.; Li, X.; Lv, Y.; Chang, J. Infrared Imaging System with a Local Polarization Channel for Target Detection. Appl. Sci. 2024, 14, 10659. https://doi.org/10.3390/app142210659
Liu X, Jiang Z, Niu C, Li X, Lv Y, Chang J. Infrared Imaging System with a Local Polarization Channel for Target Detection. Applied Sciences. 2024; 14(22):10659. https://doi.org/10.3390/app142210659
Chicago/Turabian StyleLiu, Xin, Zikang Jiang, Chunhui Niu, Xiaoying Li, Yong Lv, and Jun Chang. 2024. "Infrared Imaging System with a Local Polarization Channel for Target Detection" Applied Sciences 14, no. 22: 10659. https://doi.org/10.3390/app142210659
APA StyleLiu, X., Jiang, Z., Niu, C., Li, X., Lv, Y., & Chang, J. (2024). Infrared Imaging System with a Local Polarization Channel for Target Detection. Applied Sciences, 14(22), 10659. https://doi.org/10.3390/app142210659