Ocean Acidification and Sea Temperature Rise Affect the Queen Scallop Aequipecten opercularis (Linnaeus, 1758) in Captivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scallop Processing
2.2. Climate Change Estimation
2.3. Analysis of Scallop Growth and Indices
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Fishery and Aquaculture Statistics–Yearbook 2021. In FAO Yearbook of Fishery and Aquaculture Statistics; FAO: Rome, Italy, 2024. [Google Scholar]
- European Commission. EU Aquaculture Production Report. 2019. Available online: https://feap.info/wp-content/uploads/2020/10/20201007_feap-production-report-2020.pdf (accessed on 13 November 2024).
- Delargy, A.J.; Blackadder, L.; Bloor, I.; McMinn, C.; Rudders, D.B.; Szostek, C.L.; Stokesbury, K.D. A global review of catch efficiencies of towed fishing gears targeting scallops. Rev. Fish. Sci. Aquac. 2023, 31, 296–319. [Google Scholar] [CrossRef]
- Kurniawan, R.; Suryana, A.A.H.; Herman, R.G. The Cultivation of Scallop (Patinopecten yessoensis) in Hokkaido, Japan. Asian J. Fish. Aquat. Res. 2023, 25, 67–73. [Google Scholar] [CrossRef]
- Zang, Z.; Ji, R.; Hart, D.R.; Jin, D.; Chen, C.; Liu, Y.; Davis, C.S. Effects of warming and fishing on Atlantic sea scallop (Placopecten magellanicus) size structure in the Mid-Atlantic rotationally closed areas. ICES J. Mar. Sci. 2023, 80, 1351–1366. [Google Scholar] [CrossRef]
- Bakit, J.; Burgos-Fuster, V.; Abarca, A.; Etchepare, I.; Illanes, J.E.; Villasante, S.; Cortés, N. Scallop aquaculture growth: Four decades of economic policy in Chile. Mar. Policy 2024, 163, 106139. [Google Scholar] [CrossRef]
- Duncan, P.F.; Brand, A.R.; Strand, Ø.; Foucher, E. The European scallop fisheries for Pecten maximus, Aequipecten opercularis, Chlamys islandica, and Mimachlamys varia. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2016; Volume 40, pp. 781–858. [Google Scholar]
- Mili, S.; Ennouri, R.; Fatnassi, M.; Bejaoui, S.; Bejaoui, D. Fisheries activity in the Bizerta lagoon (South Mediterranean Sea) from the 18th to the 21st century. J. Aquac. Mar. Biol. 2023, 12, 1. [Google Scholar] [CrossRef]
- Danilov, C.; Nenciu, M.; Țiganov, G.; Filimon, A.; Tănase, M.C.; Niță, V. From isolated valves to a potential marine living resource: History, documented distribution, and sustainable population enhancement possibilities of the smooth scallop (Flexopecten glaber) on the Romanian coast. Sustainability 2024, 16, 3924. [Google Scholar] [CrossRef]
- Kovačić, I.; Žunec, A.; Matešković, M.; Burić, P.; Iveša, N.; Štifanić, M. Commercial quality, biological indices, and biochemical composition of queen scallop (Aequipecten opercularis) in culture. Fishes 2023, 8, 48. [Google Scholar] [CrossRef]
- Čanak, I.; Kovačić, I.; Žunec, A.; Jakopović, Ž.; Kostelac, D.; Markov, K.; Štifanić, M.; Burić, P.; Iveša, N.; Frece, J. Effect of dietary supplementation with Lactiplantibacillus plantarum on queen scallop Aequipecten opercularis under simulated climate change conditions. Croat. J. Fish. 2024, 82, 1–8. [Google Scholar] [CrossRef]
- Zemunik Selak, P.; Denamiel, C.; Peharda, M.; Schöne, B.R.; Thébault, J.; Uvanović, H.; Markulin, K.; Vilibić, I. Projecting Expected Growth Period of Bivalves in a Coastal Temperate Sea. Limnol. Oceanogr. Lett. 2024, 9, 815–826. [Google Scholar] [CrossRef]
- Parker, L.M.; Ross, P.M.; O’Connor, W.A.; Borysko, L.; Raftos, D.A.; Pörtner, H.O. Predicting the response of molluscs to the impact of ocean acidification. Biology 2013, 2, 651–692. [Google Scholar] [CrossRef]
- Gattuso, J.P.; Magnan, A.; Billé, R.; Cheung, W.W.; Howes, E.L.; Joos, F.; Allemand, D.; Bopp, L.; Coo-ley, S.R.; Eakin, C.M. Contrasting futures for ocean and society from different anthropogenic CO2 emis-sions scenarios. Science 2015, 349, aac4722. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.; Foo, S.A.; Ross, P.M.; Putnam, H.M. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. Glob. Change Biol. 2020, 26, 80–102. [Google Scholar] [CrossRef] [PubMed]
- Scanes, E.; Byrne, M. Warming and hypoxia threaten a valuable scallop fishery: A warning for commercial bivalve ventures in climate change hotspots. Glob. Change Biol. 2023, 29, 2043–2045. [Google Scholar] [CrossRef] [PubMed]
- Kamermans, P.; Saurel, C. Interacting climate change effects on mussels (Mytilus edulis and M. galloprovincialis) and oysters (Crassostrea gigas and Ostrea edulis): Experiments for bivalve individual growth models. Aquat. Living Resour. 2022, 35, 12. [Google Scholar] [CrossRef]
- Tomasetti, S.J.; Hallinan, B.D.; Tettelback, S.T.; Volkenborn, N.; Doherty, W.O.; Allam, B.; Gobler, C.J. Warming and hypoxia reduce performance and survival of northern bay scallops (Argopecten irradians irradians) amid a fishery collapse. Glob. Change Biol. 2023, 29, 2092–2107. [Google Scholar] [CrossRef]
- Tan, K.; Zheng, H. Ocean acidification and adaptive bivalve farming. Sci. Total Environ. 2020, 701, 134794. [Google Scholar] [CrossRef]
- Gazeau, F.; Parker, L.M.; Comeau, S.; Gattuso, J.-P.; O’Connor, W.A.; Martin, S.; Ross, P.M. Impact of ocean acidification on marine shelled molluscs. Mar. Biol. 2013, 160, 2207–2245. [Google Scholar] [CrossRef]
- Abarca-Ortega, A.; Muñoz-Moya, E.; Pacheco Alarcón, M.; García-Herrera, C.M.; Celentano, D.J.; Lagos, N.A.; Lardies, M.A. Biomechanical characterization of scallop shells exposed to ocean acidification and warming. Front. Bioeng. Biotechnol. 2022, 9, 813537. [Google Scholar] [CrossRef]
- Cameron, L.P.; Grabowski, J.H.; Ries, J.B. Effects of elevated pCO2 and temperature on the calcification rate, survival, extrapallial fluid chemistry, and respiration of the Atlantic sea scallop Placopecten magellanicus. Limnol. Oceanogr. 2022, 67, 1670–1686. [Google Scholar] [CrossRef]
- Czaja, R.J.; Holmberg, R.; Espinosa, E.P.; Hennen, D.; Cerrato, R.; Lwiza, K.; Allam, B. Behavioral and physiological effects of ocean acidification and warming on larvae of a continental shelf bivalve. Mar. Pollut. Bull. 2023, 192, 115048. [Google Scholar] [CrossRef]
- Harney, E.; Rastrick, S.P.; Artigaud, S.; Pisapia, J.; Bernay, B.; Miner, P.; Charrier, G. Impacts of ocean acidification and warming on post-larval growth and metabolism in two populations of the great scallop (Pecten maximus). J. Exp. Biol. 2023, 226, jeb245383. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.; Bacha, L.; Paz, P.H.C.; Oliveira, M.D.A.P.; Oliveira, B.C.V.; Omachi, C.; Thompson, F. Collapse of scallop Nodipecten nodosus production in tropical Southeast Brazil as a possible consequence of global warming and water pollution. Sci. Total Environ. 2023, 904, 166873. [Google Scholar] [CrossRef] [PubMed]
- Kovačić, I.; Pavičić-Hamer, D.; Kanduč, T.; Hamer, B. Adaptation of cultured mussel Mytilus galloprovincialis Lamarck, 1819 from the northern Adriatic Sea to nearby aquaculture sites and translocation. Acta Adriat. 2017, 58, 285–296. [Google Scholar] [CrossRef]
- Çolakoğlu, S.; Çolakoğlu, F.; Künili, İ.E. Length–weight relationships, meat yield, and morphometric indices of five commercial bivalve species collected from the Çanakkale Strait (Türkiye). Aquat. Sci. Eng. 2023, 39, 36–42. [Google Scholar] [CrossRef]
- Kovačić, I.; Burić, P.; Čanak, I.; Žunec, A.; Panić, A.; Kolić, V.; Iveša, N.; Frece, J.; Štifanić, M. Lactiplantibacillus plantarum I induces gonad growth in the queen scallop Aequipecten opercularis (Linnaeus, 1758) under conditions of climate change. Fishes 2024, 9, 326. [Google Scholar] [CrossRef]
- Griffith, A.W.; Gobler, C.J. Transgenerational exposure of North Atlantic bivalves to ocean acidification renders offspring more vulnerable to low pH and additional stressors. Sci. Rep. 2017, 7, 11394. [Google Scholar] [CrossRef]
- Götze, S.; Bock, C.; Eymann, C.; Lannig, G.; Steffen, J.B.; Pörtner, H.O. Single and combined effects of the “Deadly trio” hypoxia, hypercapnia and warming on the cellular metabolism of the great scallop Pecten maximus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2020, 243, 110438. [Google Scholar] [CrossRef]
- Alma, L.; Fiamengo, C.J.; Alin, S.R.; Jackson, M.; Hiromoto, K.; Padilla-Gamiño, J.L. Physiological responses of scallops and mussels to environmental variability: Implications for future shellfish aquaculture. Mar. Pollut. Bull. 2023, 194, 115356. [Google Scholar] [CrossRef]
- Silina, A.V. Somatic and reproductive growth of the Yesso scallop in polluted Amur Bay. Biol. Bull. 2020, 47, 291–298. [Google Scholar] [CrossRef]
- Xing, Q.; Wang, J.; Hu, L.; Sun, Y.; Huang, X.; Zhang, L.; Bao, Z. Seasonal variation of the thermal tolerance indicator ABT and the development of a rapid detection method in scallop Chlamys farreri. Aquaculture 2021, 531, 735960. [Google Scholar] [CrossRef]
- Ezgeta-Balić, D.; Peharda, M.; Schöne, B.R.; Uvanović, H.; Vrgoč, N.; Markulin, K.; Kovač, Ž. Different life strategies of the three commercially exploited scallop species living under the same environmental conditions. Front. Mar. Sci. 2022, 9, 992042. [Google Scholar] [CrossRef]
- Pousse, E.; Poach, M.E.; Redman, D.H.; Sennefelder, G.; Hubbard, W.; Osborne, K.; Meseck, S.L. Juvenile Atlantic sea scallop, Placopecten magellanicus, energetic response to increased carbon dioxide and temperature changes. PLoS Clim. 2023, 2, e0000142. [Google Scholar] [CrossRef]
- Cueto-Vega, R.; Flye-Sainte-Marie, J.; García-Corona, J.L.; Palacios, F.; Jean, F.; Aguirre-Velarde, A.; Thouzeau, G. Trade-off between growth and reproduction in Argopecten purpuratus (L.) scallops exposed to medium-term hypoxia and acidification. Aquaculture 2024, 586, 740713. [Google Scholar] [CrossRef]
- Masanja, F.; Yang, K.; Xu, Y.; He, G.; Liu, X.; Xu, X.; Zhao, L. Impacts of marine heat extremes on bivalves. Front. Mar. Sci. 2023, 10, 1159261. [Google Scholar] [CrossRef]
- Bock, C.; Götze, S.; Pörtner, H.O.; Lannig, G. Exploring the mechanisms behind swimming performance limits to ocean warming and acidification in the Atlantic king scallop, Pecten maximus. Front. Ecol. Evol. 2024, 12, 1347160. [Google Scholar] [CrossRef]
- Salgado-García, R.L.; Kraffe, E.; Maytorena-Verdugo, C.I.; Rivera-Camacho, A.R.; Sicard, M.T.; Arellano-Martínez, M.; Racotta, I.S. Metabolic responses of adult lion’s paw scallops Nodipecten subnodosus exposed to acute hyperthermia in relation to seasonal reproductive effort. Sci. Rep. 2020, 10, 2449. [Google Scholar] [CrossRef]
- Rheuban, J.E.; Doney, S.C.; Cooley, S.R.; Hart, D.R. Projected Impacts of Future Climate Change, Ocean Acidification, and Management on the US Atlantic Sea Scallop (Placopecten magellanicus) Fishery. PLoS ONE 2018, 13, e0203536. [Google Scholar] [CrossRef]
- Schmidt, M.; Philipp, E.E.; Abele, D. Size and age-dependent changes of escape response to predator attack in the queen scallop Aequipecten opercularis. Mar. Biol. Res. 2008, 4, 442–450. [Google Scholar] [CrossRef]
- Goda, A.M.S.; Aboseif, A.M.; Taha, M.K.; Mohammady, E.Y.; Aboushabana, N.M.; Nazmi, H.M.; Ashour, M. Optimizing nutrient utilization, hydraulic loading rate, and feed conversion ratios through freshwater IMTA-aquaponic and hydroponic systems as an environmentally sustainable aquaculture concept. Sci. Rep. 2024, 14, 14878. [Google Scholar] [CrossRef]
- Prato, E.; Biandolino, F.; Parlapiano, I.; Papa, L.; Denti, G.; Fanelli, G. Estimation of Growth Parameters of the Black Scallop Mimachlamys Varia in the Gulf of Taranto (Ionian Sea, Southern Italy). Water 2020, 12, 3342. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar] [CrossRef]
- Green, M.A.; Waldbusser, G.G.; Reilly, S.L.; Emerson, K.; O’Donnell, S. Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceanogr. 2009, 54, 1037–1047. [Google Scholar] [CrossRef]
- Hodgdon, C.T.; Torre, M.; Chen, Y. Spatiotemporal variability in Atlantic sea scallop (Placopecten magellanicus) growth in the Northern Gulf of Maine. J. Northwest Atl. Fish. Sci. 2020, 51, 1–14. [Google Scholar] [CrossRef]
- Córdova-Rodríguez, K.; Flye-Sainte-Marie, J.; Fernández, E.; Graco, M.; Rozas, A.; Aguirre-Velarde, A. Effect of low pH on growth and shell mechanical properties of the Peruvian scallop Argopecten purpuratus (Lamarck, 1819). Mar. Environ. Res. 2022, 177, 105639. [Google Scholar] [CrossRef] [PubMed]
- Ramajo, L.; Valladares, M.; Astudillo, O.; Fernández, C.; Rodriguez-Navarro, A.B.; Watt-Arévalo, P.; Tapia, C. Upwelling intensity modulates the fitness and physiological performance of coastal species: Implications for the aquaculture of the scallop Argopecten purpuratus in the Humboldt Current System. Sci. Total Environ. 2020, 745, 140949. [Google Scholar] [CrossRef] [PubMed]
- Beesley, A.; Lowe, D.M.; Pascoe, C.K.; Widdicombe, S. Effects of CO2-induced seawater acidification on the health of Mytilus edulis. Clim. Res. 2008, 37, 215–225. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Pawłowski, M.; Liu, C.; Beusen, A.H.; Shumway, S.E.; Glibert, P.M.; Overbeek, C.C. Global Hindcasts and Future Projections of Coastal Nitrogen and Phosphorus Loads Due to Shellfish and Seaweed Aquaculture. Rev. Fish. Sci. 2011, 19, 331–357. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Dvoretsky, V.G. Biological Aspects, Fisheries, and Aquaculture of Yesso Scallops in Russian Waters of the Sea of Japan. Diversity 2022, 14, 399. [Google Scholar] [CrossRef]
- Fry, J.P.; Mailloux, N.A.; Love, D.C.; Milli, M.C.; Cao, L. Feed Conversion Efficiency in Aquaculture: Do We Measure It Correctly? Environ. Res. Lett. 2018, 13, 024017. [Google Scholar] [CrossRef]
- Steeves, L.E.; Filgueira, R.; Guyondet, T.; Chasse, J.; Comeau, L. Past, Present, and Future: Performance of Two Bivalve Species under Changing Environmental Conditions. Front. Mar. Sci. 2018, 5, 184. [Google Scholar] [CrossRef]
- Lagos, N.A.; Benítez, S.; Grenier, C.; Rodriguez-Navarro, A.B.; García-Herrera, C.; Abarca-Ortega, A.; Lardies, M.A. Plasticity in organic composition maintains biomechanical performance in shells of juvenile scallops exposed to altered temperature and pH conditions. Sci. Rep. 2021, 11, 24201. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Farrell, A.P. Physiology and climate change. Science 2008, 322, 690–692. [Google Scholar] [CrossRef] [PubMed]
H | df | p | |
---|---|---|---|
GRw | 10.15 | 3 | 0.01 |
GRl | 5.11 | 3 | 0.16 |
SGRw | 3.02 | 3 | 0.38 |
FCR | 11.93 | 3 | 0.007 |
PER | 10.92 | 3 | 0.006 |
H | df | p | |
---|---|---|---|
CI | 5.08 | 3 | 0.16 |
MY | 7.04 | 3 | 0.05 |
AI | 17.44 | 3 | 0.0006 |
HPI | 3.85 | 3 | 0.27 |
GSI | 9.86 | 3 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačić, I.; Burić, P.; Iveša, N.; Panić, A.; Kolić, V.; Žunec, A.; Frece, J.; Štifanić, M. Ocean Acidification and Sea Temperature Rise Affect the Queen Scallop Aequipecten opercularis (Linnaeus, 1758) in Captivity. Appl. Sci. 2024, 14, 10660. https://doi.org/10.3390/app142210660
Kovačić I, Burić P, Iveša N, Panić A, Kolić V, Žunec A, Frece J, Štifanić M. Ocean Acidification and Sea Temperature Rise Affect the Queen Scallop Aequipecten opercularis (Linnaeus, 1758) in Captivity. Applied Sciences. 2024; 14(22):10660. https://doi.org/10.3390/app142210660
Chicago/Turabian StyleKovačić, Ines, Petra Burić, Neven Iveša, Anamarija Panić, Valentina Kolić, Ante Žunec, Jadranka Frece, and Mauro Štifanić. 2024. "Ocean Acidification and Sea Temperature Rise Affect the Queen Scallop Aequipecten opercularis (Linnaeus, 1758) in Captivity" Applied Sciences 14, no. 22: 10660. https://doi.org/10.3390/app142210660
APA StyleKovačić, I., Burić, P., Iveša, N., Panić, A., Kolić, V., Žunec, A., Frece, J., & Štifanić, M. (2024). Ocean Acidification and Sea Temperature Rise Affect the Queen Scallop Aequipecten opercularis (Linnaeus, 1758) in Captivity. Applied Sciences, 14(22), 10660. https://doi.org/10.3390/app142210660