Steady-State Response Analysis of an Uncertain Rotor Based on Chebyshev Orthogonal Polynomials
Abstract
:1. Introduction
2. The Proposed Method
2.1. Chebyshev Orthogonal Polynomial Approximation
2.2. Sparse Grid Numerical Integration
2.3. Uncertainty Analysis Flow Based on Chebyshev Orthogonal Polynomials
3. Rotor System
4. Numerical Results
4.1. Effect of Interval Support Stiffness
4.2. Effect of Interval Mass Unbalance
4.3. Effect of Interval Unbalance Phase
4.4. Effect of Multi Interval Parameters
4.5. Comparison and Validation
5. Conclusions
- (1)
- The uncertainty in support stiffness significantly affects the steady-state response and critical speed, causing the resonance frequency, originally characterized by a single-peak pattern, to transform into a broad resonance band; this is accompanied by shifts in the resonance peak.
- (2)
- The upper and lower bounds of the steady-state response are symmetric around the deterministic curve under the influence of mass-unbalance uncertainty, with these bounds widening at high rotational speeds, although the critical speed remains unchanged. Additionally, the phase of the uncertainty unbalance significantly influences the dynamic response of the rotor, resulting in substantial increases in vibration amplitude at critical speeds.
- (3)
- The effects of multiple uncertainty parameters together on the rotor’s steady-state response are multifaceted, characterized by broad amplitude bands, resonance peaks, frequency shifts, and fluctuations in amplitude magnitude.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Qingshan, Z.; Zhenhui, H.; Jun, H.; Shiyuan, P. Research on dynamic characteristics of aero-engine high-pressure rotor connection component loose fault. J. Aerosp. Power 2024, 39, 151–166. [Google Scholar]
- Zhenyong, L.; Lei, H.; Shengliang, H. Dynamic characteristics of an aero-engine rotor system with crack faults. J. Vib. Shock 2018, 37, 40–46. [Google Scholar]
- Li, Y.Q.; Luo, Z.; Li, J.; Hou, X.J. Analysis of Bolted Joint Rotor System with Uncertain Axial Stiffness. J. Northeast. Univ. (Nat. Sci.) 2019, 40, 700–704+721. [Google Scholar]
- Xinxing, M.; Zhenguo, Z.; Hongxing, H. Nonlinear vibration responses of a rubbing rotor considering the non-probabilistic uncertainty of parameters. J. Vib. Shock 2021, 40, 56–62. [Google Scholar]
- Yanxu, L.; Baoguo, L.; Zhen, Z.; Wei, F.; Ruifeng, Z. Nonparametric modeling and dispersion parameter identification foruncertain rotor systems. J. Aerosp. Power 2023, 38, 2527–2535. [Google Scholar]
- Hongliang, Y.; Xiangsong, L.; Degang, W.; Wen, B. Applications of fuzzy random finite element method to rotor dynamics. Chin. J. Appl. Mech. 2010, 27, 384–387. [Google Scholar]
- Koroishi, E.H.; Cavalini, A.A., Jr.; de Lima, A.M.; Steffen, V., Jr. Stochastic modeling of flexible rotors. J. Braz. Soc. Mech. Sci. Eng. 2012, 34, 574–583. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wu, Z. Stochastic dynamic analysis of the rotor–bearing system considering the randomness of the radial clearance. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 1–13. [Google Scholar] [CrossRef]
- Fu, C.; Ren, X.; Yang, Y.; Deng, W. Application and comparative analysis of orthogonal polynomials in uncertain rotor dynamic response calculation. J. Aerosp. Power 2018, 33, 2228–2234. [Google Scholar]
- Lara-Molina, F.A.; Koroishi, E.H.; Steffen, V., Jr. Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters. Lat. Am. J. Solids Struct. 2015, 12, 1807–1823. [Google Scholar] [CrossRef]
- Lara-Molina, F.A.; Cavalini, A.A.; Steffen, V.; Cabrera, N.V. Tilting-Pad Journal Bearing Subjected to Fuzzy Type-2 Uncertain Parameters. J. Vib. Acoust. 2019, 141, 061008.1–061008.9. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Chen, L.; Luo, Z. A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Model. 2013, 37, 4578–4591. [Google Scholar] [CrossRef]
- Fu, C.; Ren, X.; Yang, Y.; Qin, W. Dynamic response analysis of an overhung rotor with interval uncertainties. Nonlinear Dyn. 2017, 89, 2115–2124. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Wang, C.; Hong, J. Nonlinear interval analysis of rotor response with joints under uncertainties. Chin. J. Aeronaut 2020, 33, 205–218. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Wang, C.; Jie, H. Interval analysis of rotor dynamic response based on Chebyshev polynomials. Chin. J. Aeronaut. 2020, 33, 2342–2356. [Google Scholar] [CrossRef]
- Mao, W.; Zhang, N.; Feng, D.; Li, J. A Proposed Bearing Load Identification Method to Uncertain Rotor Systems. Shock Vib. 2021, 13, 6615761. [Google Scholar] [CrossRef]
- Fu, C.; Ren, X.; Yang, Y. Vibration Analysis of Rotors Under Uncertainty Based on Legendre Series. J. Vib. Eng. Technol. 2019, 7, 43–51. [Google Scholar] [CrossRef]
- Fu, C.; Xu, Y.; Yang, Y.; Lu, K.; Gu, F.; Ball, A. Dynamics analysis of a hollow-shaft rotor system with an open crack under model uncertainties. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105102. [Google Scholar] [CrossRef]
- Fu, C.; Lu, K.; Yang, Y.; Xie, Z.; Ming, A. Nonlinear Vibrations of an Uncertain Dual-Rotor Rolling Bearings System with Coupling Misalignment. J. Nonlinear Math. Phys. 2022, 29, 388–402. [Google Scholar] [CrossRef]
- Didier, J.; Faverjon, B.; Sinou, J.J. Analysing the dynamic response of a rotor system under uncertain parameters by polynomial chaos expansion. J. Vib. Control 2012, 18, 712–732. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, X.; Yu, H.; Hua, H. Stochastic dynamics and sensitivity analysis of a multistage marine shafting system with uncertainties. Ocean Eng. 2020, 219, 108388. [Google Scholar] [CrossRef]
- Lasota, R.; Stocki, R.; Tauzowski, P.; Szolc, T. Polynomial chaos expansion method in estimating probability distribution of rotor-shaft dynamic responses. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 413–422. [Google Scholar] [CrossRef]
- Lu, K.; Yang, Y.; Xia, Y.; Fu, C. Statistical moment analysis of nonlinear rotor system with multi uncertain variables. Mech. Syst. Signal Process. 2019, 116, 1029–1041. [Google Scholar] [CrossRef]
- Smolyak, S. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk Sssr 1963, 4, 1042–1045. [Google Scholar]
- Ma, Y.; Liang, Z.; Chen, M.; Hong, J. Interval analysis of rotor dynamic response with uncertain parameters. J. Sound Vib. 2013, 332, 3869–3880. [Google Scholar] [CrossRef]
n | L | SG | FTG | L | SG | FTG |
---|---|---|---|---|---|---|
5 | 1 | 11 | 32 | 2 | 66 | 243 |
7 | 1 | 15 | 128 | 2 | 113 | 2187 |
10 | 1 | 21 | 1024 | 2 | 231 | 59,049 |
13 | 1 | 27 | 8192 | 2 | 243 | 1,594,323 |
Parameters | Dimension | Description |
---|---|---|
k1 | 2.46 × 105 N/m | Stiffness of Support 1 |
k2 | 3.64 × 105 N/m | Stiffness of Support 2 |
u1 | 30 g·cm | Mass unbalance on Disc 1 |
u2 | 30 g·cm | Mass unbalance on Disc 2 |
u3 | 30 g·cm | Mass unbalance on Disc 3 |
ϕ1 | 0° | Phase angle of unbalanced mass on Disc 2 relative to Disc 1 |
ϕ2 | 0° | Phase angle of unbalanced mass on Disc 3 relative to Disc 1 |
Parameters | Degrees of Uncertainty | ||
---|---|---|---|
Case 1 | Case 2 | Case 3 | |
k1 | 5% | 10% | 15% |
k2 | 5% | 10% | 15% |
u1 | 5% | 10% | 15% |
u2 | 5% | 10% | 15% |
u3 | 5% | 10% | 15% |
ϕ1 | ±5° | ±5° | ±5° |
ϕ2 | ±5° | ±5° | ±5° |
Method | FTG Method | MCS Method | Proposed Method |
---|---|---|---|
Computational cost | 16,384 | 1000 | 680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Ning, P.; Wang, G.; Zang, C. Steady-State Response Analysis of an Uncertain Rotor Based on Chebyshev Orthogonal Polynomials. Appl. Sci. 2024, 14, 10698. https://doi.org/10.3390/app142210698
Xu B, Ning P, Wang G, Zang C. Steady-State Response Analysis of an Uncertain Rotor Based on Chebyshev Orthogonal Polynomials. Applied Sciences. 2024; 14(22):10698. https://doi.org/10.3390/app142210698
Chicago/Turabian StyleXu, Bensheng, Peijie Ning, Guang Wang, and Chaoping Zang. 2024. "Steady-State Response Analysis of an Uncertain Rotor Based on Chebyshev Orthogonal Polynomials" Applied Sciences 14, no. 22: 10698. https://doi.org/10.3390/app142210698
APA StyleXu, B., Ning, P., Wang, G., & Zang, C. (2024). Steady-State Response Analysis of an Uncertain Rotor Based on Chebyshev Orthogonal Polynomials. Applied Sciences, 14(22), 10698. https://doi.org/10.3390/app142210698