Study of the Applicability of Thermochemical Processes for Solid Recovered Fuel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Gasification
2.2.1. Experimental Setup
Oxidation: C(s) + O2(g) ↔ CO2(g) | ∆H < 0 |
Partial oxidation: C(s) + 1/2O2(g) ↔ CO(g) | ∆H < 0 |
Boudouard: C(s) + CO2(g) ↔ 2CO(g) | ∆H > 0 |
Water—gas primary: C(s) + H2O(g) ↔ CO(g) + H2(g) | ∆H > 0 |
Water—gas secondary: C(s) + 2H2O(g) ↔ CO2(g) + 2H2(g) | ∆H > 0 |
Water—gas shift (WGS): CO(g) + H2O(g) ↔ CO2(g) + H2(g) | ∆H < 0 |
Methanation: C(s) + 2H2(g) ↔ CH4(g) | ∆H < 0 |
Steam reforming: CnHx(g) + nH2O(g) ↔ (x/2+n)H2(g) + nCO(g) | ∆H > 0 |
Dry reforming: CnHx(g) + nCO2(g) ↔ 2nCO(g) + (x/2)H2(g) | ∆H > 0 |
Cracking: CnHx(g) ↔ nC(s) + (x/2)H2(g) | ∆H > 0 |
2.2.2. Experimental Design and Data Analysis
2.3. Energy Balances
2.3.1. Thermal Drying of SRF from Screening Waste
2.3.2. Combustion of SRF from Screening Waste
- The standard reference state was T0 = 25 °C (298 K) and P0 = 1.01 × 105 Pa.
- The characterisation of the input solid stream (SRF) is shown in Table 1 (dry basis).
- The calculation basis was a feeding of 1 kg of dry matter in SRF.
- Input air excess was of 50%.
- Moisture content considered in the SRF stream was varied between 0, 2.5, 5, 7.5, and 10 wt%.
- Liquid phases were considered to be ideal solutions.
- Thermodynamic properties of liquid and gaseous compounds were obtained from the literature [40].
- Heat losses (Qlosses) were taken into account as 15% of input energy [41].
- Combustion of the SRF was considered complete, with no unburned fuel.
C(s) + O2(g)→ CO2(g) | ∆H < 0 |
O2(g) → H2O(g) | ∆H < 0 |
2N(s) + O2(g) → 2NO(g) | ∆H < 0 |
S(s) + O2(g) → SO2(g) | ∆H < 0 |
- The temperature of the hot combustion gases (input stream) is the T obtained in the energy balance performed for SRF combustion (Figure 2).
- The temperature of the combustion gases at the exit of the heat exchanger (output stream) is assumed to be 200 °C.
- A thermal efficiency (Ꞃt) of 85% is assumed in the process [42].
- Liquid phases were considered ideal solutions.
- Thermodynamic properties of liquid and gaseous compounds were obtained from the literature [40].
2.3.3. Gasification of SRF from Screening Waste and Combustion of the Gasification Gas
- The standard reference state was T0 = 25 °C (298 K) and P0 = 1.01 × 105 Pa.
- The characterisation of the input solid stream (SRF) is shown in Table 1 (dry basis).
- The calculation basis was 1 kg of dry matter in SRF.
- The moisture content considered for the SRF stream was 0 (in Test #1) and 33.7 wt% (in Test #2).
- The tar content in the gas was considered negligible for energetic assessment.
- Char properties were considered equal to ash properties due to the high ash content.
- Heat losses were considered as 15 % of energy input [38].
- The temperature of the gasification gas entering into the furnace was the gasification temperature T0 = 800 °C (1073 K).
- The composition of the input stream (gasification gas) was the one obtained experimentally in the gasification tests.
- Input air excess considered was 25%.
- Combustion of the gasification gas is considered to be complete, with no unburned fuel.
3. Results
3.1. SRF Gasification Trials
3.1.1. Product Yields
3.1.2. Gas Composition
3.1.3. Tar Composition
3.2. Thermal Drying
3.3. Combustion
3.4. Gasification
3.5. Comparative Analysis: Gasification vs. Combustion
4. Conclusions
- Valorisation of SRF derived from screening wastes by means of gasification would be feasible. Experimental tests at the laboratory scale have demonstrated the technical feasibility of the process. The gasification gas obtained reached up to 4.4 MJ/m³STP, but its high tar content makes it suitable only for direct use in boilers. Air/steam gasification, under the conditions used in this study, resulted in a gas with lower tar content than air gasification, but its LHV would not allow burning it without the aid of an auxiliary fuel.
- From an energy point of view, combustion, with energy benefits of up to 1.6 MJ per kg of wet raw SRF (with 77.3% of moisture), proved to be a more efficient process than gasification, which achieved a maximum benefit of 1.4 MJ per kg of wet raw SRF when gasifying the totally dried SRF with only air as a gasifying agent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Moreno-García, A.F.; Neri-Torres, E.E.; Mena-Cervantes, V.Y.; Altamirano, R.H.; Pineda-Flores, G.; Luna-Sánchez, R.; García-Solares, M.; Vazquez-Arenas, J.; Suastes-Rivas, J.K. Sustainable biorefinery associated with wastewater treatment of Cr (III) using a native microalgae consortium. Fuel 2021, 290, 119040. [Google Scholar] [CrossRef]
- Ballesteros, I.; Duque, A.; Negro, M.; Coll, C.; Latorre-Sánchez, M.; Hereza, J.; Iglesias, R. Valorisation of cellulosic rejections from wastewater treatment plants through sugar production. J. Environ. Manag. 2022, 312, 114931. [Google Scholar] [CrossRef] [PubMed]
- Boni, M.R.; Polettini, A.; Pomi, R.; Rossi, A.; Filippi, A.; Cecchini, G.; Frugis, A.; Leoni, S. Valorisation of residues from municipal wastewater sieving through anaerobic (co-)digestion with biological sludge. Waste Manag. Res. 2021, 40, 814–821. [Google Scholar] [CrossRef]
- Hyaric, R.L.E.; Naquin, P.; Barillon, B.; Canler, J.-P.; Gourdon, R. Characterization of screenings from municipal wastewater treatment plants in the Region Rhône-Alpes. Water Sci Technol. 2009, 60, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Wid, N.; Horan, N.J. Anaerobic digestion of screenings for biogas recovery. Green Energy Technol. 2018, 85–103. [Google Scholar] [CrossRef]
- Cadavid-Rodriguez, L.S.; Horan, N. Reducing the environmental footprint of wastewater screenings through anaerobic digestion with resource recovery. Water Environ. J. 2012, 26, 301–307. [Google Scholar] [CrossRef]
- Le, R.; Canler, J.-P.; Barillon, B.; Naquin, P.; Gourdon, R. Pilot-scale anaerobic digestion of screenings from wastewater treatment plants. Bioresour. Technol. 2010, 101, 9006–9011. [Google Scholar] [CrossRef]
- Tsiakiri, E.P.; Mpougali, A.; Lemonidis, I.; Tzenos, C.A.; Kalamaras, S.D.; Kotsopoulos, T.A.; Samaras, P. Estimation of energy recovery potential from primary residues of four municipal wastewater treatment plants. Sustainability 2021, 13, 7198. [Google Scholar] [CrossRef]
- Dong, L.; Qi, W.; Sun, Y. Semi-Dry Mesophilic Anaerobic Digestion of Water Sorted Organic Fraction of Municipal Solid Waste (WS-OFMSW). Bioresour. Technol. 2010, 101, 2722–2728. [Google Scholar] [CrossRef]
- Casado, R.R.; Rivera, J.A.; García, E.B.; Cuadrado, R.E.; Llorente, M.F.; Sevillano, R.B.; Delgado, A.P. Classification and characterisation of SRF produced from different flows of crossMark of processed MSW in the Navarra region and its co-combustion performance with olive tree pruning residues. WASTE Manag. 2016, 47, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, C.J.; Tabil, L.G.; Soleimani, M.; Agnew, J.; Harrison, A. Pelletization of Refuse-Derived Fuel Fluff to Produce High Quality Feedstock. J. ENERGY Resour. Technol. ASME 2018, 140, 042003. [Google Scholar] [CrossRef]
- AENOR. Norma Española 21640:2021 Combustibles Sólidos Recuperados Especificaciones y Clases. 2021. Available online: https://tienda.aenor.com/norma-une-en-iso-21640-2021-n0068001 (accessed on 20 June 2023).
- De la Torre-Bayo, J.J.; Zamorano, M.; Torres-Rojo, J.C.; Rodríguez, M.L.; Martín-Pascual, J. Analyzing the production, quality, and potential uses of solid recovered fuel from screening waste of municipal wastewater treatment plants. Process Saf. Environ. Prot. 2023, 172, 950–970. [Google Scholar] [CrossRef]
- De la Torre-Bayo, J.J.; Martín-Pascual, J.; Torres-Rojo, J.C.; Zamorano, M. Characterization of screenings from urban wastewater treatment plants: Alternative approaches to landfill disposal. J. Clean. Prod. 2022, 380, 134884. [Google Scholar] [CrossRef]
- European Parliament and Council. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste. Off. J. Eur. Union 2018, 2018, 100–108. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0850&from=EN (accessed on 22 June 2023).
- Al-Moftah, A.M.S.H.; Marsh, R.; Steer, J. Life cycle assessment of solid recovered fuel gasification in the state of qatar. ChemEngineering 2021, 5, 81. [Google Scholar] [CrossRef]
- Edo-Alcón, N.; Gallardo, A.; Colomer-Mendoza, F.J.; Edo-Alcon, N.; Gallardo, A.; Colomer-Mendoza, F.J. Characterization of SRF from MBT plants: Influence of the input waste and of the processing technologies. FUEL Process. Technol. 2016, 153, 19–27. [Google Scholar] [CrossRef]
- Karlsson, S.; Amand, L.-E.; Liske, J. Reducing high-temperature corrosion on high- alloyed stainless steel superheaters by co-combustion of municipal sewage sludge in a fluidised bed boiler. FUEL 2015, 139, 482–493. [Google Scholar] [CrossRef]
- Wu, H.; Glarborg, P.; Frandsen, F.J.; Dam-Johansen, K.; Jensen, P.A.; Sander, B. Trace elements in co-combustion of solid recovered fuel and coal. FUEL Process. Technol. 2013, 105, 212–221. [Google Scholar] [CrossRef]
- Vainio, E.; Yrjas, P.; Zevenhoven, M.; Brink, A.; Laurén, T.; Hupa, M.; Kajolinna, T.; Vesala, H. The fate of chlorine, sulfur, and potassium during co-combustion of bark, sludge, and solid recovered fuel in an industrial scale BFB boiler. FUEL Process. Technol. 2013, 105, 59–68. [Google Scholar] [CrossRef]
- Lombardi, L.; Carnevale, E.; Corti, A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 2015, 37, 26–44. [Google Scholar] [CrossRef]
- Gerassimidou, S.; Velis, C.A.; Williams, P.T.; Castaldi, M.J.; Black, L.; Komilis, D. Technology Chlorine in waste-derived solid recovered fuel (SRF), co-combusted in cement kilns: A systematic review of sources, reactions, fate and implications. Crit. Rev. Environ. Sci. Technol. 2020, 51, 140–186. [Google Scholar] [CrossRef]
- Conesa, J.A.; Rey, L.; Egea, S.; Rey, M.D. Pollutant Formation and Emissions from Cement Kiln Stack Using a Solid Recovered Fuel from Municipal Solid Waste. Environ. Sci. Technol. 2011, 45, 5878–5884. [Google Scholar] [CrossRef] [PubMed]
- Reza, B.; Soltani, A.; Ruparathna, R.; Sadiq, R.; Hewage, K. Environmental and economic aspects of production and utilization of RDF as alternative fuel in cement plants: A case study of Metro Vancouver Waste Management. Resour. Conserv. Recycl. 2013, 81, 105–114. [Google Scholar] [CrossRef]
- Saveyn, H.; Eder, P.; Thonier, G.; Hestin, M. Towards a better exploitation of the technical potential of waste- to-energy. In EUR 28230 EN; Publications Office of the European Union: Luxembourg, 2016; ISBN 978-92-79-63778-0. [Google Scholar]
- Santamaria, L.; Beirow, M.; Mangold, F.; Lopez, G.; Olazar, M.; Schmid, M.; Li, Z.; Scheffknecht, G. Influence of temperature on products from fluidized bed pyrolysis of wood and solid recovered fuel. Fuel 2021, 283, 118922. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (Part 3): Gasification technologies. Bioresour. Technol. 2002, 83, 55–63. [Google Scholar] [CrossRef]
- Vonk, G.; Piriou, B.; Wolbert, D.; Cammarano, C.; Vaitilingom, G. Analysis of pollutants in the product gas of a pilot scale downdraft gasifier fed with wood, or mixtures of wood and waste materials. Biomass Bioenergy 2019, 125, 139–150. [Google Scholar] [CrossRef]
- Pinto, F.; André, R.N.; Carolino, C.; Miranda, M.; Abelha, P.; Direito, D.; Perdikaris, N.; Boukis, I. Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends. Fuel 2014, 117, 1034–1044. [Google Scholar] [CrossRef]
- Akkache, S.; Hernandez, A.-B.; Teixeira, G.; Gelix, F.; Roche, N.; Ferrasse, J.H. Co-gasification of wastewater sludge and different feedstock: Feasibility study. Biomass Bioenergy 2016, 89, 201–209. [Google Scholar] [CrossRef]
- Recari, J.; Berrueco, C.; Abelló, S.; Montané, D.; Farriol, X. Gasification of two solid recovered fuels (SRFs) in a lab-scale fluidized bed reactor: Influence of experimental conditions on process performance and release of HCl, H2S, HCN and NH3. Fuel Process. Technol. 2016, 142, 107–114. [Google Scholar] [CrossRef]
- Arena, U.; Di Gregorio, F. Fluidized bed gasification of industrial solid recovered fuels. WASTE Manag. 2016, 50, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Dunnu, G.; Panopoulos, K.; Karellas, S.; Maier, J.; Touliou, S.; Koufodimos, G.; Boukis, I.; Kakaras, E. The solid recovered fuel Stabilat (R): Characteristics and fluidised bed gasification tests. Fuel 2012, 93, 273–283. [Google Scholar] [CrossRef]
- Hervy, M.; Remy, D.; Dufour, A.; Mauviel, G. Air-blown gasification of Solid Recovered Fuels (SRFs) in lab-scale bubbling fluidized-bed: Influence of the operating conditions and of the SRF composition. ENERGY Convers. Manag. 2019, 181, 584–592. [Google Scholar] [CrossRef]
- Afailal, Z.; Gil-Lalaguna, N.; Fonts, I.; Gonzalo, A.; Arauzo, J.; Sánchez, J.L. Thermochemical valorization of argan nutshells: Torrefaction and air–steam gasification. Fuel 2023, 332, 125970. [Google Scholar] [CrossRef]
- Xiao, Z.; Yuan, X.; Jiang, L.; Chen, X.; Li, H.; Zeng, G.; Leng, L.; Wang, H.; Huang, H. Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust. Energy 2015, 91, 441–450. [Google Scholar] [CrossRef]
- Xu, J.; Sun, Y.; Liu, Y.; Yuan, W.; Dai, L.; Xu, W.; Wang, H. In-situ sludge settleability improvement and carbon reuse in SBR process coupled with hydrocyclone. Sci. Total Environ. 2019, 69, 133825. [Google Scholar] [CrossRef]
- Abedin, M.J.; Masjuki, H.H.; Kalam, M.A.; Sanjid, A.; Rahman, S.M.A.; Masum, B.M. Energy balance of internal combustion engines using alternative fuels. Renew. Sustain. Energy Rev. 2013, 26, 20–33. [Google Scholar] [CrossRef]
- Perry, R.H.; Green, D.W.; Maloney, J. Perry’s Chemical Engineers’ Handbook; McGraw-Hill B: New York, NY, USA, 1998. [Google Scholar]
- Manganaro, J.; Chen, B.; Adeosun, J.; Lakhapatri, S.; Favetta, D.; Lawal, A.; Farrauto, R.; Dorazio, L.; Rosse, D.J. Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis. Energy Fuels 2011, 25, 2711–2720. [Google Scholar] [CrossRef]
- Chowdhury, J.I.; Hu, Y.; Haltas, I.; Balta-Ozkan, N.; Matthew, G.J.; Varga, L. Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors. Renew. Sustain. Energy Rev. 2018, 94, 1153–1178. [Google Scholar] [CrossRef]
- Chiang, K.-Y.; Lu, C.-H.; Lin, M.-H.; Chien, K.-L. Reducing tar yield in gasification of paper-reject sludge by using a hot-gas cleaning system. Energy 2013, 50, 47–53. [Google Scholar] [CrossRef]
- Gil-Lalaguna, N.; Sánchez, J.L.; Murillo, M.B.; Gea, G. Use of sewage sludge combustion ash and gasification ash for high-temperature desulphurization of different gas streams. Fuel 2015, 141, 99–108. [Google Scholar] [CrossRef]
- Siedlecki, M.; De Jong, W. Biomass gasification as the first hot step in clean syngas production process e gas quality optimization and primary tar reduction measures in a 100 kW thermal input steam e oxygen blown CFB gasifier. Biomass Bioenergy 2011, 35, S40–S62. [Google Scholar] [CrossRef]
- Arena, U.; Di Gregorio, F. Corrigendum to Gasification of a solid recovered fuel in a pilot scale fluidized bed reactor [117 (2013) 528–536). Fuel 2014, 120, 528–536. [Google Scholar] [CrossRef]
- Anis, S.; Zainal, Z.A. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review. Renew. Sustain. Energy Rev. 2011, 15, 2355–2377. [Google Scholar] [CrossRef]
- Corella, J.; Orío, A.; Aznar, P. Biomass Gasification with Air in Fluidized Bed: Reforming of the Gas Composition with Commercial Steam Reforming Catalysts. Ind. Eng. Chem. Res. 1998, 37, 4617–4624. [Google Scholar] [CrossRef]
- Li, C.; Suzuki, K. Tar property, analysis, reforming mechanism and model for biomass gasification-An overview. Renew. Sustain. Energy Rev. 2009, 13, 594–604. [Google Scholar] [CrossRef]
- Ponzio, A.; Kalisz, S.; Blasiak, W. Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG) of plastic containing waste. Fuel Process. Technol. 2006, 87, 223–233. [Google Scholar] [CrossRef]
- Coll, R.; Salvadó, J.; Farriol, X.; Montané, D. Steam reforming model compounds of biomass gasification tars: Conversion at different operating conditions and tendency towards coke formation. Fuel Process. Technol. 2001, 74, 19–31. [Google Scholar] [CrossRef]
- Vonk, G.; Piriou, B.; Santos, P.F.D.; Wolbert, D.; Vaitilingom, G. Comparative analysis of wood and solid recovered fuels gasification in a downdraft fixed bed reactor. Waste Manag. 2019, 85, 106–120. [Google Scholar] [CrossRef]
Parameter (Dry Basis) | Value |
---|---|
C (wt%) | 52.80 ± 0.4 |
H (wt%) | 7.43 ± 0.09 |
N (wt%) | 2.685 ± 0.007 |
S (wt%) | 0.010 ± 0.002 |
O (wt%) | 27.4 ± 0.5 |
Ash (wt%) | 9.4 ± 3.4 |
Volatile solids (wt%) | 91.0 ± 2.8 |
Cl (wt%) | 0.3 ± 0.2 |
Hg (mg/MJ) | 3.8 × 10−5 ± 2.9 × 10−5 |
Higher heating value (MJ/kg) | 26.0 ± 2.7 |
Lower heating value (MJ/kg) | 24.3 ± 2.6 |
Bulk density (kg/m3) | 58.2 ± 2.9 |
Test Number | 1 | 2 |
---|---|---|
Temperature (°C) | 800 | 800 |
Steam to carbon, S/C (kg/kg) | 0 | 1 |
ER (%) | 29.6 | 37.7 |
Test Number | 1 | 2 |
---|---|---|
Experiment code | T800_S/C0_ER29.6 | T800_S/C1_ER37.7 |
Mass balance (%) | 90.7 | 96.3 |
Moisture of the input SRF stream to gasification (wt%) | 0 | 33.7 |
Product distribution (wt%) | ||
Solid yield | 21.9 | 12.2 |
Liquid yield | 21.6 | 75 |
Tar yield | 3.6 | 1.4 |
Gas yield (N2-free basis) | 130.4 | 100.7 |
Gas composition (vol%, dry basis) | ||
H2 | 7.9 | 6.8 |
CO | 9.0 | 4.1 |
CO2 | 13.3 | 17.8 |
CH4 | 3.1 | 2.0 |
C2H6 | 0.2 | 0.1 |
C2H4 | 2.0 | 1.5 |
H2S | 0.02 | 0.11 |
N2 | 63.3 | 67.6 |
H2/CO molar ratio | 0.874 | 1.66 |
Gas quality parameters | ||
Gas production (m3STP/kg of dried SRF) | 2.3 | 2.9 |
Gas LHV (MJ/m3STP) (dry basis) | 4.4 | 2.9 |
Cold gasification efficiency (%) | 44.6 | 37.8 |
Gas phase carbon yield (%) | 80.6 | 91.2 |
g tar/m3STP gas | 15.7 | 4.8 |
Test Number | 1 | 2 |
---|---|---|
Moisture of the input SRF stream to gasification (wt%) | 0 | 33.7 |
Family of tar compounds (% of chromatographic area) | ||
Light aromatics with a single ring | 1.5 | 1.7 |
Polycyclic aromatics | 87.2 | 95.4 |
Heterocyclic aromatics containing nitrogen | 7.6 | 0.8 |
Heterocyclic aromatics containing oxygen | 1.4 | 1.5 |
Organic compounds containing sulfur | 1.5 | 1.7 |
Raw SRF moisture (%) (before drying) | 77.3 | ||||
Input SRF stream moisture (%) for combustion | 0 | 2.5 | 5 | 7.5 | 10 |
Mass of combustion gases (kg/kg of dry matter in SRF) | |||||
CO2 | 1.94 | 1.94 | 1.94 | 1.94 | 1.94 |
H2O | 0.67 | 0.69 | 0.72 | 0.75 | 0.78 |
NO | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
O2 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 |
N2 | 8.67 | 8.67 | 8.67 | 8.67 | 8.67 |
Total mass | 12.21 | 12.24 | 12.27 | 12.29 | 12.32 |
Raw SRF moisture (%) (before drying) | 77.3 | ||||
(MJ/kg of dry matter in SRF) | −2.78 | ||||
Input SRF stream moisture (%) | 0 | 2.5 | 5 | 7.5 | 10 |
Energetic terms in the combustion energy balance | |||||
Δhinput (MJ/kg of dry matter in SRF) | −2.78 | −3.18 | −3.61 | −4.06 | −4.54 |
Heat losses (MJ/kg of dry matter in SRF) | 0.42 | 0.48 | 0.54 | 0.61 | 0.68 |
(MJ/kg of dry matter in SRF) | −26.1 | −26.5 | −26.8 | −27.2 | −27.6 |
(MJ/kg of dry matter in SRF) | 0.024 | 0.024 | 0.025 | 0.025 | 0.025 |
Output T (K) | 1237 | 1230 | 1222 | 1214 | 1206 |
Heat exchanger: amount of steam produced | |||||
Mass of steam (kg/kg of dry matter in SRF) | 5.65 | 5.61 | 5.57 | 5.52 | 5.48 |
Summary | |||||
Energy recovered in the heat exchanger to produce high-pressure steam (MJ/kg of dry matter in SRF) | 15.88 | 15.76 | 15.65 | 15.51 | 15.40 |
Drying energy (MJ/kg of dry matter in SRF) | 8.85 | 8.81 | 8.77 | 8.68 | 8.63 |
Final energy benefit (MJ/kg of dry matter in SRF) | 7.03 | 6.95 | 6.88 | 6.83 | 6.77 |
Test Number | 1 | 2 |
---|---|---|
Experiment code | T800_S/C0_ER29.6 | T800_S/C1_ER37.7 |
Moisture of the input SRF stream to gasification (%) | 0 | 33.7 |
Energetic assessment in gasification trials | ||
Δhinput (MJ/kg of dry matter in SRF) | −2.78 | −10.87 |
Δhoutput (MJ/kg of dry matter in SRF) | −6.21 | −8.64 |
Q (MJ/kg of dry matter in SRF) | −3.43 | 2.23 |
Test Number | 1 | 2 |
---|---|---|
Experiment code | T800_S/C0_ER29.6 | T800_S/C1_ER37.7 |
Moisture of the input SRF stream to gasification (%) | 0 | 33.7 |
Gasification gas composition (kg/kg of dry matter in SRF) | ||
H2 | 0.017 | 0.018 |
CO | 0.263 | 0.151 |
CO2 | 0.612 | 1.03 |
CH4 | 0.051 | 0.041 |
C2H6 | 0.005 | 0.003 |
C2H4 | 0.057 | 0.056 |
H2S | 0.0007 | 0.0049 |
H2O | 0.216 | 0.75 |
N2 | 1.85 | 2.49 |
Air flow fed to the furnace | ||
Excess above stoichiometric (%) | 25 | |
O2 (kg/kg of dry matter in SRF) | 0.883 | 0.761 |
N2 (kg/kg of dry matter in SRF) | 2.91 | 2.51 |
Calculation of generated output gases (kg/kg of dry matter in SRF) | ||
CO2 | 1.36 | 1.56 |
H2O | 0.566 | 1.08 |
O2 | 0.177 | 0.152 |
N2 | 4.76 | 4.99 |
Total mass | 6.86 | 7.80 |
Test Number | 1 | 2 |
---|---|---|
Experiment code | T800_S/C0_ER29.6 | T800_S/C1_ER37.7 |
Moisture of the input SRF stream to gasification (%) | 0 | 33.7 |
Energetic terms in the gasification energy balance | ||
Δhinput (MJ/kg of dry matter in SRF) | −4.38 | −13.5 |
Heat losses (MJ/kg of dry matter in SRF) | 0.656 | 2.03 |
(MJ/kg of dry matter in SRF) | −19.79 | −28.62 |
(MJ/kg of dry matter in SRF) | 0.0081 | 0.0097 |
Output T (K) | 2112 | 1647 |
Heat exchanger: amount of steam produced | ||
Mass of steam (kg/kg of dry matter in SRF) | 4.12 | 3.53 |
Summary | ||
Energy recovered in the heat exchanger to produce high-pressure steam (MJ/kg of dry matter in SRF) | 11.58 | 9.92 |
Total energy recovered after gasification and heat exchanger (MJ/kg of dry matter in SRF) | 15.01 | 7.69 |
Drying energy (MJ/kg of dry matter in SRF) | 8.85 | 7.73 |
Final energy benefit (MJ/kg of dry matter in SRF) | 6.16 | −0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Torre-Bayo, J.J.; Zamorano, M.; Torres-Rojo, J.C.; Gil-Lalaguna, N.; Gea, G.; Fonts, I.; Martín-Pascual, J. Study of the Applicability of Thermochemical Processes for Solid Recovered Fuel. Appl. Sci. 2024, 14, 10765. https://doi.org/10.3390/app142210765
de la Torre-Bayo JJ, Zamorano M, Torres-Rojo JC, Gil-Lalaguna N, Gea G, Fonts I, Martín-Pascual J. Study of the Applicability of Thermochemical Processes for Solid Recovered Fuel. Applied Sciences. 2024; 14(22):10765. https://doi.org/10.3390/app142210765
Chicago/Turabian Stylede la Torre-Bayo, Juan Jesús, Montserrat Zamorano, Juan Carlos Torres-Rojo, Noemí Gil-Lalaguna, Gloria Gea, Isabel Fonts, and Jaime Martín-Pascual. 2024. "Study of the Applicability of Thermochemical Processes for Solid Recovered Fuel" Applied Sciences 14, no. 22: 10765. https://doi.org/10.3390/app142210765
APA Stylede la Torre-Bayo, J. J., Zamorano, M., Torres-Rojo, J. C., Gil-Lalaguna, N., Gea, G., Fonts, I., & Martín-Pascual, J. (2024). Study of the Applicability of Thermochemical Processes for Solid Recovered Fuel. Applied Sciences, 14(22), 10765. https://doi.org/10.3390/app142210765