Evaluation of the Dark Fermentation Process as an Alternative for the Energy Valorization of the Organic Fraction of Municipal Solid Waste (OFMSW) for Bogotá, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Inoculum
2.3. Experimental Design
2.4. Analytical Method
2.5. Scaling and Environmental Analysis Process
3. Results
3.1. Substrate and Inoculum Characterization
3.2. Hydrogen Production Potential and Selection of the Best-Performing Combination
3.3. Quantification of VFAs in the Effluent
3.4. Sizing and Scaling of the Utilization Plant
3.4.1. Population Projection and Substrate Availability
3.4.2. Formulation of the Scaled Process Block Diagram
3.4.3. Equipment Sizing
3.5. Technical Analysis of the Process as an Alternative for the Energy Recovery of OFMSW
3.6. Análisis de Ciclo de Vida del Proceso
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Superintendencia de Servicios Públicos Domiciliarios. Informe Nacional de Disposición Final de Residuos Sólidos 2021; Departamento Nacional de Planeación: Bogotá, Colombia, 2023. [Google Scholar]
- Asociación en Participación MAG CONSULTORIA—DNV.GL. Estudio de Técnicas Alternativas de Tratamiento, Disposición Final y/o Aprovechamiento de Residuos Sólidos—Propuesta de Ajuste Decreto 838 de 2005 (Compilado en el Decreto 1077 de 2015); Banco Interamericano de Desarrollo: Bogotá, Colombia, 2016. [Google Scholar]
- Documento CONPES 3874. Política Nacional Para la Gestión Integral de Residuos Sólidos; Consejo Nacional de Política Económica y Social. Departamento Nacional de Planeación de Colombia: Bogotá, Colombia, 2016.
- Ulloa-Murillo, L.M.; Villegas, L.M.; Rodríguez-Ortiz, A.R.; Duque-Acevedo, M.; Cortés-García, F.J. Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean. Int. J. Environ. Res. Public Health 2022, 19, 6041. [Google Scholar] [CrossRef]
- Unidad Administrativa Especial de Servicios Públicos. Documento 345. Plan de Gestión Integral de Residuos Sólidos—PGIRS; Alcaldía Mayor de Bogotá: Bogotá, Colombia, 2021. [Google Scholar]
- Mu, L.; Zhang, L.; Zhu, K.; Ma, J.; Li, A. Semi-continuous anaerobic digestion of extruded OFMSW: Process performance and energetics evaluation. Bioresour. Technol. 2018, 247, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Blanco Londoño, S.A.; Rodríguez Chaparro, T. Producción de biohidrógeno a partir de residuos mediante fermentación oscura: Una revisión crítica 1993–2011. Ingeniare. Rev. Chil. Ing. 2012, 20, 398–411. [Google Scholar] [CrossRef]
- Tunay, D.; Yildirim, O.; Ozkaya, B.; Demir, A. Effect of organic fraction of municipal solid waste addition to high rate activated sludge system for hydrogen production from carbon rich waste sludge. Int. J. Hydrogen Energy 2022, 47, 26284–26293. [Google Scholar] [CrossRef]
- Bedoya, A.; Castrillón, J.C.; Ramírez, J.E.; Vásquez, J.E.; Zabala, M.A. Biological production of hydrogen: A literature survey|Producción biológica de hidrógeno: Una aproximación al estado del arte. DYNA 2008, 75, 137–157. [Google Scholar]
- Bundhoo, M.A.Z.; Mohee, R. Inhibition of dark fermentative bio-hydrogen production: A review. Int. J. Hydrogen Energy 2016, 41, 6713–6733. [Google Scholar] [CrossRef]
- Samrot, A.V.; Rajalakshmi, D.; Sathiyasree, M.; Saigeetha, S.; Kasipandian, K.; Valli, N.; Jayshree, N.; Prakash, P.; Shobana, N. A Review on Biohydrogen Sources, Production Routes, and Its Application as a Fuel Cell. Sustainability 2023, 15, 12641. [Google Scholar] [CrossRef]
- Poirier, S.; Steyer, J.-P.; Bernet, N.; Trably, E. Mitigating the variability of hydrogen production in mixed culture through bioaugmentation with exogenous pure strains. Int. J. Hydrogen Energy 2020, 45, 2617–2626. [Google Scholar] [CrossRef]
- Paillet, F.; Marone, A.; Moscoviz, R.; Steyer, J.-P.; Tapia-Venegas, E.; Bernet, N.; Trably, E. Improvement of biohydrogen production from glycerol in micro-oxidative environment. Int. J. Hydrogen Energy 2019, 44, 17802–17812. [Google Scholar] [CrossRef]
- Fuess, L.T.; Zaiat, M.; do Nascimento, C.A.O. Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles. Bioresour. Technol. 2019, 286, 121379. [Google Scholar] [CrossRef]
- Kumar, G.; Zhen, G.; Kobayashi, T.; Sivagurunathan, P.; Kim, S.H.; Xu, K.Q. Impact of pH control and heat pre-treatment of seed inoculum in dark H2 fermentation: A feasibility report using mixed microalgae biomass as feedstock. Int. J. Hydrogen Energy 2016, 41, 4382–4392. [Google Scholar] [CrossRef]
- Usman, T.M.; Banu, J.R.; Gunasekaran, M.; Kumar, G. Biohydrogen production from industrial wastewater: An overview. Bioresour. Technol. Rep. 2019, 7, 100287. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, J.; Xiao, B.; Cong, M.; Hojo, T.; Cheng, J.; Li, Y.-Y. Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste. Energy 2019, 179, 1235–1245. [Google Scholar] [CrossRef]
- Yeshanew, M.M.; Paillet, F.; Barrau, C.; Frunzo, L.; Lens, P.N.L.; Esposito, G.; Escudie, R.; Trably, E. Co-production of hydrogen and methane from the organic fraction of municipal solid waste in a pilot scale dark fermenter and methanogenic biofilm reactor. Front. Environ. Sci. 2018, 6, 41. [Google Scholar] [CrossRef]
- Kora, E.; Patrinou, V.; Antonopoulou, G.; Ntaikou, I.; Tekerlekopoulou, A.G.; Lyberatos, G. Dark fermentation of expired fruit juices for biohydrogen production followed by treatment and biotechnological exploitation of effluents towards bioplastics and microbial lipids. Biochem. Eng. J. 2023, 195, 108901. [Google Scholar] [CrossRef]
- López Pulecio, P.A. Efecto de la Carga Orgánica y la Temperatura en la Producción de AGV en la Digestión anaerobia de Mucílago de Café y Estiércol de Cerdo. Uniandes, 2015. Available online: http://hdl.handle.net/1992/17180 (accessed on 8 November 2023).
- Villa Leyva, A. Optimización Heurística de un Fermentador Productor de Hidrógeno Modificando la Carga Orgánica. Master’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2015. [Google Scholar]
- Alexis, P.-O.B.; Patricia, T.-L.; Fernando, M.-R.L.; Marcela, C.-C.L.; Carlos, V.-F.; Alexander, T.-L.W.; Abdón, O.-A.J. Efecto de la relación sustrato-inóculo sobre el potencial bioquímico de metano de biorresiduos de origen municipal. Ing. Investig. Tecnol. 2015, 16, 515–526. [Google Scholar] [CrossRef]
- Rodríguez Valderrama, S. Enfoque de Biorrefinería para la Producción de Hidrógeno y Metano a Partir de Residuos Orgánicos. Master’s Thesis, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, 2018. [Google Scholar]
- Albarrán Contreras, B.A. Efecto de la Velocidad Superficial del Gas Sobre la Producción de Hidrógeno con Vinazas Vitivinícolas. Master’s Thesis, Universidad Nacional Autónoma de México, Mexico City, México, 2017. [Google Scholar]
- Ivan, C.; María, T.; Aura, V.; Paola, A.; Mario, H. Anaerobic co-digestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment. Chem. Eng. Trans. 2016, 49, 385–390. [Google Scholar] [CrossRef]
- Mosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving anaerobic co-digestion of different residual biomass sources readily available in Colombia by process parameters optimization. Biomass Bioenergy 2020, 142, 105790. [Google Scholar] [CrossRef]
- Ochoa, C.; Hernández, M.A.; Bayona, O.L.; Cabeza, I.O.; Candela, A.M. Value-Added By-Products During Dark Fermentation of Agro-Industrial Residual Biomass: Metabolic Pathway Analysis. Waste Biomass Valoriz. 2021, 12, 5937–5948. [Google Scholar] [CrossRef]
- Rangel, C.; Sastoque, J.; Calderon, J.; Gracia, J.; Cabeza, I.; Villamizar, S.; Acevedo, P. Pilot-Scale Assessment of Biohydrogen and Volatile Fatty Acids Production via Dark Fermentation of Residual Biomass. Chem. Eng. Trans. 2022, 92, 61–66. [Google Scholar] [CrossRef]
- Rojas, J.C.; Ramírez, K.G.; Velasquez, P.E.; Acevedo, P.; Santis, A. Evaluation of bio-hydrogen production by dark fermentation from Cocoa waste mucilage. Chem. Eng. Trans. 2020, 79, 283–288. [Google Scholar] [CrossRef]
- Hernández, M.A.; Susa, M.R.; Andres, Y. Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure. Bioresour. Technol. 2014, 168, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, E.L.M.; Zapata-Zapata, A.D.; Kim, D. Hydrogen production from coffee mucilage in dark fermentation with organic wastes. Energies 2019, 12, 71. [Google Scholar] [CrossRef]
- Castro Mora, Y.; Rodríguez Penagos, A. Producción de Hidrógeno por Fermentación Oscura a Partir de Estiércol de Cerdo, Mucílago de Cacao y Mucílago de Café; Universidad Cooperativa de Colombia: Bogotá, Colombia, 2018. [Google Scholar]
- Rodríguez, A.; Ángel, J.; Rivero, E.; Acevedo, P.; Santis, A.; Rojas, I.C.; Acosta, M.; Hernández, M. Evaluation of the biochemical methane potential of pig manure, organic fraction of municipal solid waste and cocoa industry residues in Colombia. Chem. Eng. Trans. 2017, 57, 55–60. [Google Scholar] [CrossRef]
- Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A.; Reid, G. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int. J. Hydrogen Energy 2008, 33, 4064–4073. [Google Scholar] [CrossRef]
- Show, K.-Y.; Lee, D.-J.; Chang, J.-S. Bioreactor and process design for biohydrogen production. Bioresour. Technol. 2011, 102, 8524–8533. [Google Scholar] [CrossRef] [PubMed]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed]
- American Society for Testing and Material. Standard Test Methods for Total Kjeldahl Nitrogen in Water. Standard D3590-02. 2006. Available online: https://www.astm.org/d3590-02.html (accessed on 1 April 2024).
- American Society for Testing and Material. Standard Specification for Rubber—Concentrated, Ammonia Stabilized, Creamed, and Centrifuged Natural Latex. Standard D1076. 2002. Available online: https://www.astm.org/d1076-02.html (accessed on 1 April 2024).
- American Society for Testing and Material. Standard Test Methods for Chemical Oxygen Demand (Dichromate Oxygen Demand) of Water. Standard D1252. 2020. Available online: https://www.astm.org/d1252-06r20.html (accessed on 1 April 2024).
- Sailer, G.; Eichermüller, J.; Poetsch, J.; Paczkowski, S.; Pelz, S.; Oechsner, H.; Müller, J. Characterization of the separately collected organic fraction of municipal solid waste (OFMSW) from rural and urban districts for a one-year period in Germany. Waste Manag. 2021, 131, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Heaven, S.; Venetsaneas, N.; Banks, C.J.; Bridgwater, A.V. Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion. Appl. Energy 2018, 213, 158–168. [Google Scholar] [CrossRef]
- Clavijo, A.M. Estudio Técnico, Económico y Ambiental del Proceso de Producción de Bioetanol a Partir de la Fracción Orgánica de Residuos Sólidos Urbanos. Master’s Thesis, Universidad de Sevilla, Sevilla, Spain, 2018. [Google Scholar]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T. A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Fonseca, M.B.; Rodríguez, A.A.; Pérez, S.R. Co-digestión anaerobia de la fracción orgánica de residuos sólidos urbanos y su lixiviado. Rev. Colomb. Biotecnol. 2020, 22, 70–81. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y. Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb. Cell Fact. 2018, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Alavi-Borazjani, S.A.; Tarelho, L.A.D.C.; Capela, M.I. Parametric optimization of the dark fermentation process for enhanced biohydrogen production from the organic fraction of municipal solid waste using Taguchi method. Int. J. Hydrogen Energy 2021, 46, 21372–21382. [Google Scholar] [CrossRef]
- Seifert, K.; Zagrodnik, R.; Stodolny, M.; Łaniecki, M. Biohydrogen production from chewing gum manufacturing residue in a two-step process of dark fermentation and photofermentation. Renew. Energy 2018, 122, 526–532. [Google Scholar] [CrossRef]
- Castillo-Hernández, A.; Mar-Alvarez, I.; Moreno-Andrade, I. Start-up and operation of continuous stirred-tank reactor for biohydrogen production from restaurant organic solid waste. Int. J. Hydrogen Energy 2015, 40, 17239–17245. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, R.; El-Mashad, H.M.; Sun, H.; Ying, Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrogen Energy 2008, 33, 6968–6975. [Google Scholar] [CrossRef]
- Carrillo-Verástegui, K.A.; Escamilla-Alvarado, C.; Escárcega-González, C.E.; Cano-Gómez, J.J.; Paniagua-Vega, D.; Nava-Bravo, I.; Ríos-Leal, E. Biohydrogen potential assessment of Opuntia spp.: Effect of inoculum-to-substrate ratio and residual biomass evaluation. Int. J. Hydrogen Energy 2022, 47, 30085–30096. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Campoy, R.A.; Álvarez-Gallego, C.J.; García, L.I.R. Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge—Optimization of treatment conditions. Bioresour. Technol. 2014, 164, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Rangela, C.; Sastoqueb, J.; Calderonb, J.; Mosquerab, J.; Velasquezd, P.; Cabezabc, I.; Acevedobd, P. Hydrogen production by dark fermentation process: Effect of initial organic load. Chem. Eng. Trans. 2020, 79, 133–138. [Google Scholar] [CrossRef]
- Dong, L.; Zhenhong, Y.; Yongming, S.; Xiaoying, K.; Yu, Z. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int. J. Hydrogen Energy 2009, 34, 812–820. [Google Scholar] [CrossRef]
- Weide, T.; Brügging, E.; Wetter, C.; Ierardi, A.; Wichern, M. Use of organic waste for biohydrogen production and volatile fatty acids via dark fermentation and further processing to methane. Int. J. Hydrogen Energy 2019, 44, 24110–24125. [Google Scholar] [CrossRef]
- Ciudad y Territorio, Ministerio de Vivienda. Reglamento Técnico para el Sector de Agua Potable y Saneamiento Básico RAS; Gobierno de Colombia: Bogotá, Colombia, 2017; pp. 1–182. [Google Scholar]
- Díaz, M.A.; Mora-Quinones, R.C.; Ramirez-Rodriguez, C. Bogotá y Área de Influencia: Tendencias Económicas en las Primeras dos Décadas del Siglo XXI; Documentos de Trabajo Sobre Economia Regional y Urbana; Banco de la República: Bogotá, Colombia, 2020; Volume 291, pp. 1–52. [Google Scholar]
- Departamento Administrativo Nacional de Estadística DANE and Secretaría Distrital de Planeación. Documento Metodológico de Elaboración de las Proyecciones de Población de Bogotá, D.C., a Nivel de Localidad Hasta el año 2035 y de Unidad de Planeamiento Zonal—UPZ Hasta el Año 2024; Gobierno de Colombia: Bogotá, Colombia, 2020. [Google Scholar]
- Avendaño Adames, D.N.; Ladino Valbuena, J.D. Producción de Biohidrógeno Mediante Fermentación Oscura a Partir de RSU de Una Plaza de Mercado en Bogotá. Bachelor’s Thesis, Universidad Santo Tomás, Bogotá, Colombia, 2019. [Google Scholar]
- Romero Mora, M.R.R.V. Evaluación Técnica y Ambiental de la Influencia de la Temperatura en la Producción de Biohidrógeno en Procesos de Fermentación Oscura de Biomasa Residual a Gran Escala. Bachelor’s Thesis, Universidad Santo Tomás, Bogotá, Colombia, 2021. Available online: http://hdl.handle.net/11634/33993 (accessed on 1 April 2024).
- Vázquez, R.M.; Pascual, M.G.M.; Sánchez, M.D.R.R.; Pérez, G.M. Balance de Materia y Energía: Procesos Industriales; Grupo Editorial Patria: Ciudad de Mexico, México, 2014. [Google Scholar]
- Dinesh, G.K.; Chauhan, R.; Chakma, S. Influence and strategies for enhanced biohydrogen production from food waste. Renew. Sustain. Energy Rev. 2018, 92, 807–822. [Google Scholar] [CrossRef]
- Hernández Romero, M. Diseño de Una Planta de Biometanización de Residuos Domésticos. 2016. Available online: https://oa.upm.es/42792/ (accessed on 1 April 2024).
- Morero, B.; Gropelli, E.; Campanella, E.A. Revisión de las principales tecnologías de purificación de biogás. Cienc. Tecnol. 2010, 10, 187–201. [Google Scholar]
- Ministerio para la Transición Ecológica y el Reto Demográfico. Guía para el cálculo de la huella de carbono y para la elaboración de un plan de mejora de una organización. 2023. Available online: https://www.miteco.gob.es/content/dam/miteco/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/guia_huella_carbono_tcm30-479093.pdf (accessed on 1 April 2024).
- Unidad de Planeación Minero Energética UPME. Factor de emisiones de la red de energía eléctrica en Colombia. 2021. Available online: https://www1.upme.gov.co/siame/Paginas/calculo-factor-de-emision-de-Co2-del-SIN.aspx (accessed on 1 April 2024).
- Banu, J.R.; Ginni, G.; Kavitha, S.; Kannah, R.Y.; Kumar, S.A.; Bhatia, S.K.; Kumar, G. Integrated biorefinery routes of biohydrogen: Possible utilization of acidogenic fermentative effluent. Bioresour. Technol. 2021, 319, 124241. [Google Scholar] [CrossRef]
- SimaPro LCA Software, Version 9.5. Available online: https://simapro.com/ (accessed on 1 April 2024).
- Morya, R.; Raj, T.; Lee, Y.; Kumar, A.; Kumar, D.; Rani, R.; Singh, S.; Prakash, J.; Kim, S. Recent updates in biohydrogen production strategies and life–cycle assessment for sustainable future. Bioresour. Technol. 2022, 366, 128–159. [Google Scholar] [CrossRef]
- Wilkinson, J.; Mays, T.; McManus, M. Review and meta-analysis of recent life cycle assessments of hydrogen production. Clean. Environ. Syst. 2023, 9, 100–116. [Google Scholar] [CrossRef]
- Barragán, P. Evaluación Medioambiental de la Obtención del Biogás-Biometano por Digestión Anaerobia de Residuos Orgánicos de Forma Separada Mediante el Análisis de Ciclo de Vida y su Uso en el Transporte. Master’s Thesis, Universidad Pontificia Comillas, Madrid, Spain, 2023. [Google Scholar]
- Mohamed, F.M. Ecaluacion de los Impactos Ambientales de Una Icineradira de Residuos Sólidos Urbanos con Recuperacion de Energía Mediante el Análisis de Ciclo de Vida. Ph.D. Thesis, Universidad de Málaga, Málaga, Spain, 2015. [Google Scholar]
Combination | Organic Load (gVS/L) | s/x Ratio (gVSs/gVSi) |
---|---|---|
C1 | 5 | 0.5 |
C2 | 5 | 0.75 |
C3 | 5 | 1 |
C4 | 10 | 0.5 |
C5 | 10 | 0.75 |
C6 | 10 | 1 |
C7 | 15 | 0.5 |
C8 | 15 | 0.75 |
C9 | 15 | 1 |
Parameters | Value | Unit |
---|---|---|
TS | 20.80 | % |
VT | 15.07 | % |
VS on a dry basis | 72.47 | % dry basis |
DQO | 0.18 | g/L |
NTK | 1.56 | % dry basis |
C | 48 | % dry basis |
H2 | 6.4 | % dry basis |
O2 | 37.6 | % dry basis |
N2 | 2.6 | % dry basis |
S2 | 0.4 | % dry basis |
Ashes | 5 | % |
System Complexity Level | ||||
---|---|---|---|---|
Method to be Used | Low | Medium | Medium-High | High |
Arithmetic | X | X | X | |
Geometric | X | X | X | X |
Wappaus | X | X | X | X |
Graphical | X | X | X | |
Exponential | X | X | X | |
Detailed by Zones | X | X | ||
Detailed by Densities | X | X |
Complexity Level | Minimum Value kg/Capita-Day | Maximum Value kg/Capita-Day | Average Value Kg/Capita-Day |
---|---|---|---|
Low | 0.3 | 0.75 | 0.45 |
Medium | 0.3 | 0.95 | 0.45 |
Medium-High | 0.3 | 1 | 0.53 |
High | 0.44 | 1.1 | 0.79 |
Year | Daily Projected MSW Production (kg/Day) | Daily Projected OFMSW Production (kg/Day) |
---|---|---|
2042 | 7,086,833.25 | 3,636,962.82 |
Operation/Unit Process | Equipment | Required Capacity | Offered Capacity | Operational Unit | Number of Equipment |
---|---|---|---|---|---|
Storage | Hopper | 151.54 | 191 | t/h | 1 |
Dark Fermentation | CSTR Reactor | 186,118.72 | 10,000 | m3 | 19 |
Impulsion 1 | Centrifugal Pump | 481.67 | 500.00 | m3/h | 1 |
Impulsion 2 | Sludge Pump | 861.66 | 45.35 | m3/h | 19 |
Biogas Impulsion | Compressor | 307.57 | 360.00 | m3/h | 1 |
Heat Exchange | Heat Exchanger | 1700.23 | 1700.23 | m3/h | 1 |
Gas Washing | Plate Tower | 380.00 | 380.00 | m3/h | 1 |
Mixing | Mixing Tank | 861.66 | 50.00 | t/h | 17 |
Grinding | Ball Mill | 151.54 | 170.00 | t/h | 1 |
Separation | Flash Separator | 307.57 | 307.57 | m3/h | 1 |
Crushing | Crusher | 151,540.12 | 20,000.00 | kg/h | 8 |
Combustion Cell | Power Generation | 5,128,575.25 | 264,000.00 | kwh/dia | 19 |
Environmental Aspect | Quantity | Unit of Measure |
---|---|---|
Water Consumption | 12,688.65 | t/day |
Effluent from Industrial Wastewater | 1180.72 | t/day |
Direct CO2 Emissions | 64,831.89 | t CO2 per year |
Carbon Footprint from Indirect Emissions | 126,942.36 | t CO2 eq per year |
Total Carbon Footprint | 191,774.24 | t CO2 eq per year |
Impact Category | Measure Unit | Total | Steam, in Chemical Industry | Sulfuric Acid | Sodium Hydroxide | Tap Water | Electricity, Low Voltage |
---|---|---|---|---|---|---|---|
Acidification (fate not incl.) | kg SO2 eq | 0.215 | 0.004 | 0.193 | 0.001 | 0.000 | 0.017 |
Eutrophication | kg PO43− eq | 0.008 | 0.001 | 0.004 | 0.000 | 0.000 | 0.003 |
Global warming (GWP100a) | kg CO2 eq | 5.853 | 1.287 | 2.027 | 0.127 | 0.020 | 2.393 |
Photochemical oxidation | kg NMVOC | 0.033 | 0.003 | 0.022 | 0.000 | 0.000 | 0.007 |
Abiotic depletion, elements | kg Sb eq | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Abiotic depletion, fossil fuels | MJ | 61.905 | 15.436 | 22.998 | 1.351 | 0.200 | 21.921 |
Water scarcity | m3 eq | 16.330 | 0.039 | 16.000 | 0.119 | −0.129 | 0.309 |
Ozone layer depletion (ODP) (optional) | kg CFC-11 eq | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerra-Quiroz, A.-P.; Rodríguez-Morón, S.-A.; Acevedo-Pabón, P.-A.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E. Evaluation of the Dark Fermentation Process as an Alternative for the Energy Valorization of the Organic Fraction of Municipal Solid Waste (OFMSW) for Bogotá, Colombia. Appl. Sci. 2024, 14, 3437. https://doi.org/10.3390/app14083437
Becerra-Quiroz A-P, Rodríguez-Morón S-A, Acevedo-Pabón P-A, Rodrigo-Ilarri J, Rodrigo-Clavero M-E. Evaluation of the Dark Fermentation Process as an Alternative for the Energy Valorization of the Organic Fraction of Municipal Solid Waste (OFMSW) for Bogotá, Colombia. Applied Sciences. 2024; 14(8):3437. https://doi.org/10.3390/app14083437
Chicago/Turabian StyleBecerra-Quiroz, Ana-Paola, Santiago-Andrés Rodríguez-Morón, Paola-Andrea Acevedo-Pabón, Javier Rodrigo-Ilarri, and María-Elena Rodrigo-Clavero. 2024. "Evaluation of the Dark Fermentation Process as an Alternative for the Energy Valorization of the Organic Fraction of Municipal Solid Waste (OFMSW) for Bogotá, Colombia" Applied Sciences 14, no. 8: 3437. https://doi.org/10.3390/app14083437
APA StyleBecerra-Quiroz, A. -P., Rodríguez-Morón, S. -A., Acevedo-Pabón, P. -A., Rodrigo-Ilarri, J., & Rodrigo-Clavero, M. -E. (2024). Evaluation of the Dark Fermentation Process as an Alternative for the Energy Valorization of the Organic Fraction of Municipal Solid Waste (OFMSW) for Bogotá, Colombia. Applied Sciences, 14(8), 3437. https://doi.org/10.3390/app14083437