End-to-End Latency Optimization for Resilient Distributed Convolutional Neural Network Inference in Resource-Constrained Unmanned Aerial Vehicle Swarms
Abstract
Share and Cite
Kim, J.; Seon, J.; Kim, S.; Lee, S.; Kim, J.; Hwang, B.; Sun, Y.; Kim, J. End-to-End Latency Optimization for Resilient Distributed Convolutional Neural Network Inference in Resource-Constrained Unmanned Aerial Vehicle Swarms. Appl. Sci. 2024, 14, 10832. https://doi.org/10.3390/app142310832
Kim J, Seon J, Kim S, Lee S, Kim J, Hwang B, Sun Y, Kim J. End-to-End Latency Optimization for Resilient Distributed Convolutional Neural Network Inference in Resource-Constrained Unmanned Aerial Vehicle Swarms. Applied Sciences. 2024; 14(23):10832. https://doi.org/10.3390/app142310832
Chicago/Turabian StyleKim, Jeongho, Joonho Seon, Soohyun Kim, Seongwoo Lee, Jinwook Kim, Byungsun Hwang, Youngghyu Sun, and Jinyoung Kim. 2024. "End-to-End Latency Optimization for Resilient Distributed Convolutional Neural Network Inference in Resource-Constrained Unmanned Aerial Vehicle Swarms" Applied Sciences 14, no. 23: 10832. https://doi.org/10.3390/app142310832
APA StyleKim, J., Seon, J., Kim, S., Lee, S., Kim, J., Hwang, B., Sun, Y., & Kim, J. (2024). End-to-End Latency Optimization for Resilient Distributed Convolutional Neural Network Inference in Resource-Constrained Unmanned Aerial Vehicle Swarms. Applied Sciences, 14(23), 10832. https://doi.org/10.3390/app142310832