Fast Numerical Optimization of Electrode Geometry in a Two-Electrode Electric Resistance Furnace Using a Surrogate Criterion Derived Exclusively from an Electromagnetic Submodel
Abstract
:1. Introduction
2. Mathematical Model of the Process
2.1. Electromagnetic Submodel
2.2. Hydrodynamic Submodel
3. Optimization System
3.1. Surrogate Optimization Criterion
3.2. Optimization Parameters
3.3. Optimization Constraints
- Distances of electrodes from the bottom wall , , greater than the assumed margin,
- Distances of electrodes from the left wall , , greater than the margin,
- Distances of electrodes from the right wall , , greater than the margin,
- Distances of electrodes from the front wall , , greater than the margin,
- Distances of electrodes from the back wall , , greater than the margin,
- Immersion depths , , greater than the margin.
4. Results
4.1. Variant 0—Basic Construction of the Furnace
4.2. Variant 1—Optimization Without Forcing the Heat Generation Center in the Bath Axis
4.3. Variant 2: Optimization with Forcing the Heat Generation Center in the Bath Axis
4.4. Variant 3: Optimization with Forcing the Heat Generation Center as Far as Possible from the Bath Axis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlesinger, M.E.; King, M.J.; Sole, K.C.; Davenport, W.G. Extractive Metallurgy of Copper, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 191–203. [Google Scholar]
- Xia, J.; Ahokainen, T. Numerical modelling of slag flows in an electric furnace. Scand. J. Metall. 2004, 33, 220–228. [Google Scholar] [CrossRef]
- Qiang, W.; Fengsheng, Q.; Fang, W.; Baokuan, L. Numerical Investigation on Electromagnetism and Heat Transfer in Electroslag Remelting Process with Triple-Electrode. Int. J. Precis. Eng. Manuf. 2015, 16, 2467–2474. [Google Scholar]
- Gunnewiek, L.; Oshinowo, L.; Plikas, T.; Haywood, R. The application of numerical modelling to the design of electric furnaces. In Proceedings of the Tenth International Ferroalloys Congres, Cape Town, South Africa, 1–4 February 2004; pp. 555–564. [Google Scholar]
- Inaba, S.; Kimura, Y.; Shibata, H.; Ohta, H. Measurement of Physical Properties of Slag Formed around the Raceway in the Working Blast furnace. ISIJ Int. 2004, 44, 2120–2126. [Google Scholar] [CrossRef]
- Sheng, Y.; Irons, G.; Tisdale, D. Transport phenomena in electric smelting of nickel matte: Part I. Electric potential distribution. Metall. Mater. Trans. B 1998, 29, 77–83. [Google Scholar] [CrossRef]
- Sheng, Y.; Irons, G.; Tisdale, D. Transport phenomena in electric smelting of nickel matte: Part II. Mathematical modeling. Metall. Mater. Trans. B 1998, 29, 85–94. [Google Scholar] [CrossRef]
- Zybała, R.; Golak, S.; Sak, T.; Madej, P. Electrical and thermal analysis for the copper removal process in an electric furnace. Comput. Mathods Mater. Sci. 2023, 23, 31–44. [Google Scholar] [CrossRef]
- Warczok, A.; Riveros, G. Slag cleaning in crossed electric and magnetic fields. Miner. Eng. 2007, 20, 34–43. [Google Scholar] [CrossRef]
- Ritchie, S.; Eksteen, J.J. Investigating the effect of slag bath conditions on the existence of multiphase emulsion zones in PGM smelting furnaces using computational fluid dynamics. Miner. Eng. 2011, 24, 661–675. [Google Scholar] [CrossRef]
- Karalis, K.T.; Karkalos, N.; Cheimarios, N.; Antipas, G.S.E.; Xenidis, A.; Boudouvis, A.G. A CFD analysis of slag properties, electrode shape and immersion depth effects on electric submerged arc furnace heating in ferronickel processing. Appl. Math. Model. 2016, 40, 9052–9066. [Google Scholar] [CrossRef]
- Karalis, K.; Karkalos, N.; Antipasand, G.S.E.; Xenidis, A. Pragmatic analysis of the electric submerged arc furnace continuum. R. Soc. Open Sci. 2017, 4, 170313–170327. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, N.H.; Li, T. Computational analysis of a twin-electrode DC submerged arc furnace for MgO crystal production. J. Mater. Process. Technol. 2010, 211, 388–395. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, H.; Wang, G.; Wang, J.; Li, W. Voxelization modelling based finite element simulation and process parameter optimization for Fused Filament Fabrication. Mater. Des. 2020, 187, 108409. [Google Scholar] [CrossRef]
- Amaze, C.; Kuharat, S.; Bég, O.A.; Kadir, A.; Jouri, W.; Bég, T.A. Finite element stress analysis and topological optimization of a commercial aircraft seat structure. Eur. Mech. Sci. 2024, 8, 54–70. [Google Scholar] [CrossRef]
- Satonkar, N.; Venkatachalam, G.; Pitchumani, S.V. Finite Element Analysis of Electromagnetic Forming Process and Optimization of Process Parameters Using RSM. Mathematics 2024, 12, 1622. [Google Scholar] [CrossRef]
- Ge, Y.; He, K.; Xiao, L.; Yuan, W.; Huang, S.M. Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm. Renew. Energy 2022, 183, 294–303. [Google Scholar] [CrossRef]
- Diao, K.; Sun, X.; Lei, G.; Guo, Y.; Zhu, J. Multiobjective system level optimization method for switched reluctance motor drive systems using finite-element model. IEEE Trans. Ind. Electron. 2020, 67, 10055–10064. [Google Scholar] [CrossRef]
- Ivanchenko, H.; Koshevyi, O.; Zatyliuk, G. Multi-criteria parametric optimization of the displacement and weight of a shell of minimal surface on a circular contour consisting of two inclined ellipses under thermal and power loading with consideration of geometric nonlinearity. Strength Mater. Theory Struct. 2024, 112, 209–221. [Google Scholar] [CrossRef]
- Orosz, T.; Pánek, D.; Karban, P. FEM based preliminary design optimization in case of large power transformers. Appl. Sci. 2020, 10, 1361. [Google Scholar] [CrossRef]
- Oglejan, R.; Mociran, B. eXtended Finite Element Method Connected with Multi-objective Optimization Algorithm Used in 3D Electromagnetic Problems. In Proceedings of the 8th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 21–23 May 2019; pp. 1–4. [Google Scholar]
- Harscher, P.; Amari, S.; Vahldieck, R. A fast FEM-based field optimization using analytically calculated gradients. In Proceedings of the 2000 Asia-Pacific Microwave Conference, Sydney, Australia, 3–6 December 2000; pp. 441–444. [Google Scholar]
- Chen, C.R.; Miga, M.I.; Galloway, R.L. Optimizing electrode placement using finite-element models in radiofrequency ablation treatment planning. IEEE Trans. Biomed. Eng. 2008, 56, 237–245. [Google Scholar] [CrossRef]
- Golak, S.; Przylucki, R. Homogenization of electromagnetic force field during casting of functionally graded composites. IEEE Trans. Magn. 2011, 47, 4701–4706. [Google Scholar] [CrossRef]
- Golak, S.; Kordos, M. Shaping inductor geometry for casting functionally graded composites. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2016, 35, 16–26. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.-F. Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2008, 79, 1309–1331. [Google Scholar] [CrossRef]
- Dular, P.; Geuzaine, C. GetDP Reference Manual: The Documentation for GetDP, a General Environment for the Treatment of Discrete Problems. Available online: https://getdp.info/doc/texinfo/getdp.html (accessed on 10 August 2024).
- ANSYS, Inc. ANSYS Fluent 2022R2 Theory Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- ANSYS, Inc. ANSYS Discovery SpaceClaim 2022R2 User’s Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- ANSYS, Inc. ANSYS Fluent Meshing 2022R2 User’s Guide. Release; ANSYS, Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- Yang, H.; Wolters, J.; Pischke, P.; Soltner, H.; Eckert, S.; Natour, G.; Fröhlich, J. Modelling and simulation of a copper slag cleaning process improved by electromagnetic stirring. IOP Conf. Ser. Mater. Sci. Eng. 2017, 228, 012007. [Google Scholar] [CrossRef]
- Vovchenko, L.L.; Matzui, L.Y.; Kulichenko, A.A. Thermal characterization of expanded graphite and its composites. Inorg. Mater. 2007, 43, 597–601. [Google Scholar] [CrossRef]
- Strupskii, B.M. Raschety Rudno-Termicheskikh Pechei, 1st ed.; Metallurgiya: Moscow, Russia, 1982; pp. 520–548. [Google Scholar]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Powell, M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 1964, 7, 155–162. [Google Scholar] [CrossRef]
- Powell, M.J.D. Direct search algorithms for optimization calculations. Acta Numer. 1998, 7, 287–336. [Google Scholar] [CrossRef]
Parameter |
---|
Immersion of electrode 1 |
Immersion of electrode 2 |
Deflection X of electrode 1 |
Deflection X of electrode 2 |
Deflection Y of electrode 1 |
Deflection Y of electrode 2 |
Position X of electrode 1 |
Position X of electrode 2 |
Position Y of electrode 1 |
Position Y of electrode 2 |
Slag | |
---|---|
Density [kg · ] | 3600 |
Viscosity [kg · · ] | 0.1 |
Thermal expansion | 10.3 · |
Electrical conductivity [S · ] | 80 |
Thermal conductivity [W · · ] | 0.178 |
Graphite electrode | |
Density [kg · ] | 2830 |
Electrical conductivity [S · )] | 112500 |
Thermal conductivity [W · · ] | 100 |
Dimensions of the computational domain | |
Slag | 0.54 × 0.27 × 0.18 [m] |
Electrode diameter | 0.045 [m] |
Supply parameters | |
Frequency | 50 [Hz] |
Power | 18 [kW] |
Variant 0 | Variant 1 | Variant 2 | Variant 3 | |
---|---|---|---|---|
Vertical position of JHC [m] | −0.0662 | −0.0996 | −0.0950 | −0.0918 |
Distance of JHC from axis [m] | 0.0000 | 0.0850 | 0.0011 | 0.15421 |
Average velocity [m/s] | 0.0008 | 0.00782 | 0.00845 | 0.00593 |
Maximum velocity [m/s] | 0.01067 | 0.04000 | 0.04185 | 0.04635 |
Total Lorentz force [N/kg] | 0.00136 | 0.00175 | 0.00173 | 0.00148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zybała, R.; Wyciślik, J.; Golak, S.; Ciepliński, P.; Sak, T.; Madej, P. Fast Numerical Optimization of Electrode Geometry in a Two-Electrode Electric Resistance Furnace Using a Surrogate Criterion Derived Exclusively from an Electromagnetic Submodel. Appl. Sci. 2024, 14, 10957. https://doi.org/10.3390/app142310957
Zybała R, Wyciślik J, Golak S, Ciepliński P, Sak T, Madej P. Fast Numerical Optimization of Electrode Geometry in a Two-Electrode Electric Resistance Furnace Using a Surrogate Criterion Derived Exclusively from an Electromagnetic Submodel. Applied Sciences. 2024; 14(23):10957. https://doi.org/10.3390/app142310957
Chicago/Turabian StyleZybała, Radosław, Jakub Wyciślik, Sławomir Golak, Piotr Ciepliński, Tomasz Sak, and Piotr Madej. 2024. "Fast Numerical Optimization of Electrode Geometry in a Two-Electrode Electric Resistance Furnace Using a Surrogate Criterion Derived Exclusively from an Electromagnetic Submodel" Applied Sciences 14, no. 23: 10957. https://doi.org/10.3390/app142310957
APA StyleZybała, R., Wyciślik, J., Golak, S., Ciepliński, P., Sak, T., & Madej, P. (2024). Fast Numerical Optimization of Electrode Geometry in a Two-Electrode Electric Resistance Furnace Using a Surrogate Criterion Derived Exclusively from an Electromagnetic Submodel. Applied Sciences, 14(23), 10957. https://doi.org/10.3390/app142310957