Advanced Nested Coaxial Thin-Film ZnO Nanostructures Synthesized by Atomic Layer Deposition for Improved Sensing Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sensing Response Testing System
3. Results and Discussion
3.1. Physical Characteristics of the ZnO Nanorods and Nested Nanotubes
3.2. Sensing Response Analysis as a Function of Temperature
3.3. Sensing Response Analysis as a Function of Various Ethanol Vapor Concentrations
3.4. Gain in Sensing Response Enhancement
3.5. The Relationship Between Surface-to-Volume Ratio and Sensitivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 2021, 360, 115544. [Google Scholar] [CrossRef]
- Khan, M.W.A.; Shaalan, N.M.; Ahmed, F.; Sherwani, S.; Aljaafari, A.; Alsukaibi, A.K.D.; Alenezi, K.M.; Al-Motair, K. Gas Sensing Performance of Zinc Oxide Nanoparticles Fabricated via Ochradenus baccatus Leaf. Chemosensors 2024, 12, 28. [Google Scholar] [CrossRef]
- Aleksanyan, M.; Sayunts, A.; Shahkhatuni, G.; Simonyan, Z.; Shahnazaryan, G.; Aroutiounian, V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10, 245. [Google Scholar] [CrossRef]
- Wang, L.; Kang, Y.; Liu, X.; Zhang, S.; Huang, W.; Wang, S. ZnO Nanorod Gas Sensor for Ethanol Detection. Sens. Actuators B Chem. 2012, 162, 237–243. [Google Scholar] [CrossRef]
- Hsueh, T.J.; Chang, S.J.; Hsu, C.L.; Lin, Y.R.; Chen, I.C. Promotion of the Electrochemical Activity of a Bimetallic Platinum-Ruthenium Catalyst by Oxidation-Induced Segregation. J. Electrochem. Soc. 2008, 155, 152–155. [Google Scholar] [CrossRef]
- Kim, H.; Pak, Y.; Jeong, Y.; Kim, W.; Kim, J.; Jung, G.Y. Amorphous Pd-assisted H2 Detection of ZnO Nanorod Gas Sensor with Enhanced Sensitivity. Sens. Actuators B 2018, 262, 460–468. [Google Scholar] [CrossRef]
- Kakati, N.; Jee, S.H.; Kim, S.H.; Lee, H.K.; Yoon, Y.S. Sensitivity Enhancement of ZnO Nanorod Gas Sensors with Surface Modification by an InSb Thin Film. Jpn. J. Appl. Phys. 2009, 48, 105002. [Google Scholar] [CrossRef]
- Xu, M.; Li, Q.; Ma, Y.; Fan, H. Ni-doped ZnO Nanorods Gas Sensor: Enhanced Gas-sensing Properties, C and DC Electrical Behaviors. Sens. Actuators B 2014, 199, 403–409. [Google Scholar] [CrossRef]
- Hjiri, M.; Algessair, S.; Dhahri, R.; Albargi, H.B.; Mansour, N.B.; Assadid, A.A.; Neri, G. Ammonia gas sensors based on undoped and Ca doped ZnO nanoparticles. RSC Adv. 2024, 14, 5001–5011. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Baumgart, H.; Abdel-Fattah, T.M.; Namkoong, G. Synthesis of Nested Coaxial Multiple-Walled Nanotubes by Atomic Layer Deposition. ACS Nano 2010, 4, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Chen, X.; Zhang, K.; Baumgart, H. Improved Gas Sensing Performance of ALD AZO 3-D Coated ZnO Nanorods. ECS J. Solid State Sci. Technol. 2018, 7, 246–252. [Google Scholar] [CrossRef]
- Lin, P. Enhanced Sensing Performance of Novel Nanostructured ZnO Gas Sensors in Ethanol Vapor Concentration Detection Applications. Ph.D. Dissertation, Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA, 2019. [Google Scholar]
- Pratzler, S.; Knopf, D.; Ulbig, P.; Scholl, S. Preparation of Calibration Gas Mixtures for the Measurement of Breath Alcohol Concentration. J. Breath Res. 2010, 4, 036004. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, C.S.; Sahay, P.P. Alcohol-sensing Characteristics of Spray Deposited ZnO Nano-particle Thin Films. Sens. Actuators B Chem. 2011, 160, 1043. [Google Scholar] [CrossRef]
- Choopun, S.; Hongsith, N.; Wongrat, E. Metal-Oxide Nanowires for Gas Sensor, Nanowires-Recent Advances; IntechOpen: London, UK, 2012; Chapter 1. [Google Scholar]
- Hongsith, N.; Wongrat, E.; Kerdcharoen, T.; Choopun, S. Sensor Response Formula for Sensor Based on ZnO Nanostructures. Sens. Actuators B Chem. 2010, 144, 67–72. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.; Zhang, L.S.; Zhang, K.; Baumgart, H. Advanced Nested Coaxial Thin-Film ZnO Nanostructures Synthesized by Atomic Layer Deposition for Improved Sensing Performance. Appl. Sci. 2024, 14, 10959. https://doi.org/10.3390/app142310959
Lin P, Zhang LS, Zhang K, Baumgart H. Advanced Nested Coaxial Thin-Film ZnO Nanostructures Synthesized by Atomic Layer Deposition for Improved Sensing Performance. Applied Sciences. 2024; 14(23):10959. https://doi.org/10.3390/app142310959
Chicago/Turabian StyleLin, Pengtao, Lari S. Zhang, Kai Zhang, and Helmut Baumgart. 2024. "Advanced Nested Coaxial Thin-Film ZnO Nanostructures Synthesized by Atomic Layer Deposition for Improved Sensing Performance" Applied Sciences 14, no. 23: 10959. https://doi.org/10.3390/app142310959
APA StyleLin, P., Zhang, L. S., Zhang, K., & Baumgart, H. (2024). Advanced Nested Coaxial Thin-Film ZnO Nanostructures Synthesized by Atomic Layer Deposition for Improved Sensing Performance. Applied Sciences, 14(23), 10959. https://doi.org/10.3390/app142310959