Optimization of Intelligent-Reflecting-Surface-Enabled Covert Communication in Multi-Sensor Systems
Abstract
:1. Introduction
- (1)
- We conducted the first theoretical study on IRS-enabled covert communication in multi-sensor systems with a 2-BPSK codebook. We provided closed-form solutions for the KL divergence and mutual information analysis of the target system.
- (2)
- We introduced a gradient descent algorithm, which, when employed, yields optimal initial phase angles for 2-BPSK. This algorithm both ensures covertness and maximizes the transmission rate.
- (3)
- We proposed a physical layer optimization method for IRS-enabled covert communication, transforming the multi-parameter optimization problem of transmission amplitude and phase angles into a phase-angle optimization problem. Based on the optimized phase angles, we obtained the optimal transmission amplitude.
- (4)
- Through experimental simulations, we validated the effectiveness of the proposed gradient descent algorithm. Comparative analysis with traditional phase angle parameters demonstrated that our optimization method achieves a better covert transmission rate under the same covertness constraints.
2. Related Works
3. System Model
3.1. Communication Scenario and Equivalent Channel
3.2. Construction of 2-BPSK Codebook
3.3. Transmission Scheme
3.4. Hypothesis Test
3.5. Problem Formulation and Optimization Method Proposed
4. Achievability Analysis of 2-BPSK Codebook at Willie
5. Performance Analysis of the Covert Transmission
6. Problem Reformulation
Algorithm 1 Gradient Descent Optimization Algorithm with Random Initialization |
|
7. Numerical Results
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IRS | Intelligent Reflecting Surface |
UAV | Unmanned Aerial Vehicle (UAV) |
BPSK | Binary Phase-Shift Keying |
AWGN | Additive White Gaussian Noise |
RIS | Reconfigurable Intelligent Surface |
LPD | Low Probability of Detection |
References
- Liu, Z.; Liu, J.; Zeng, Y.; Ma, J. Covert wireless communication in IoT network: From AWGN channel to THz band. IEEE Internet Things J. 2020, 7, 3378–3388. [Google Scholar] [CrossRef]
- Gao, C.; Yang, B.; Jiang, X.; Inamura, H.; Fukushi, M. Covert Communication in Relay-Assisted IoT Systems. IEEE Internet Things J. 2021, 8, 6313–6323. [Google Scholar] [CrossRef]
- Frustaci, M.; Pace, P.; Aloi, G.; Fortino, G. Evaluating Critical Security Issues of the IoT World: Present and Future Challenges. IEEE Internet Things J. 2018, 5, 2483–2495. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, L.D. Internet of Things (IoT) Cybersecurity Research: A Review of Current Research Topics. IEEE Internet Things J. 2019, 6, 2103–2115. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, X.; Choo, K.K.R.; Deng, R.H.; Wu, H.; Li, H. Fair and Dynamic Data Sharing Framework in Cloud-Assisted Internet of Everything. IEEE Internet Things J. 2019, 6, 7201–7212. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, R.; Shuai, H.; Zhu, S.; Li, C. Covert performance for integrated satellite multiple terrestrial relay networks with partial relay selection. Sensors 2022, 22, 5524. [Google Scholar] [CrossRef] [PubMed]
- Moon, J. Performance Comparison of Relay-Based Covert Communications: DF, CF and AF. Sensors 2023, 23, 8747. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Cao, D.; Zhang, Q.; Xu, Y.; Liu, G. Covert Communication Gains From Adversary’s Uncertainty of Phase Angles. IEEE Trans. Inf. Forensics Secur. 2023, 18, 2899–2912. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D.; Guha, S. Hiding information in noise: Fundamental limits of covert wireless communication. IEEE Commun. Mag. 2015, 53, 26–31. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D. Limits of Reliable Communication with Low Probability of Detection on AWGN Channels. IEEE J. Sel. Areas Commun. 2013, 31, 1921–1930. [Google Scholar] [CrossRef]
- Marvin, S.; Jim, O.; Robert, S.; Barry, L. Spread Spectrum Communications Handbook, Electronic Edition, 1st ed.; McGraw-Hill Education: New York, NY, USA, 2002. [Google Scholar]
- Çek, M.E.; Savaci, F. Stable non-Gaussian noise parameter modulation in digital communication. Electron. Lett. 2009, 45, 1256–1257. [Google Scholar] [CrossRef]
- Chen, X.; An, J.; Xiong, Z.; Xing, C.; Zhao, N.; Yu, F.R.; Nallanathan, A. Covert Communications: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2023, 25, 1173–1198. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D. Square root law for communication with low probability of detection on AWGN channels. In Proceedings of the 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, USA, 1–6 July 2012; pp. 448–452. [Google Scholar]
- Che, P.H.; Bakshi, M.; Jaggi, S. Reliable deniable communication: Hiding messages in noise. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013; pp. 2945–2949. [Google Scholar]
- Wang, L.; Wornell, G.W.; Zheng, L. Fundamental limits of communication with low probability of detection. IEEE Trans. Inf. Theory 2016, 62, 3493–3503. [Google Scholar] [CrossRef]
- Tahmasbi, M.; Bloch, M.R. First- and Second-Order Asymptotics in Covert Communication. IEEE Trans. Inf. Theory 2019, 65, 2190–2212. [Google Scholar] [CrossRef]
- Bloch, M.R. Covert communication over noisy channels: A resolvability perspective. IEEE Trans. Inf. Theory 2016, 62, 2334–2354. [Google Scholar] [CrossRef]
- Arumugam, K.S.K.; Bloch, M.R. Covert Communication Over a K-User Multiple-Access Channel. IEEE Trans. Inf. Theory 2019, 65, 7020–7044. [Google Scholar] [CrossRef]
- Kumar Arumugam, K.S.; Bloch, M.R. Embedding Covert Information in Broadcast Communications. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2787–2801. [Google Scholar] [CrossRef]
- Cho, K.H.; Lee, S.H. Treating Interference as Noise Is Optimal for Covert Communication Over Interference Channels. IEEE Trans. Inf. Forensics Secur. 2021, 16, 322–332. [Google Scholar] [CrossRef]
- Kibloff, D.; Perlaza, S.M.; Wang, L. Embedding Covert Information on a Given Broadcast Code. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 2169–2173. [Google Scholar] [CrossRef]
- Tan, V.Y.F.; Lee, S.H. Time-Division is Optimal for Covert Communication Over Some Broadcast Channels. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1377–1389. [Google Scholar] [CrossRef]
- Hu, J.; Yan, S.; Zhou, X.; Shu, F.; Li, J.; Wang, J. Covert Communication Achieved by a Greedy Relay in Wireless Networks. IEEE Trans. Wirel. Commun. 2018, 17, 4766–4779. [Google Scholar] [CrossRef]
- Forouzesh, M.; Azmi, P.; Kuhestani, A.; Yeoh, P.L. Covert Communication and Secure Transmission Over Untrusted Relaying Networks in the Presence of Multiple Wardens. IEEE Trans. Commun. 2020, 68, 3737–3749. [Google Scholar] [CrossRef]
- He, B.; Yan, S.; Zhou, X.; Jafarkhani, H. Covert Wireless Communication With a Poisson Field of Interferers. IEEE Trans. Wirel. Commun. 2018, 17, 6005–6017. [Google Scholar] [CrossRef]
- Zheng, T.X.; Wang, H.M.; Ng, D.W.K.; Yuan, J. Multi-Antenna Covert Communications in Random Wireless Networks. IEEE Trans. Wirel. Commun. 2019, 18, 1974–1987. [Google Scholar] [CrossRef]
- Huang, K.W.; Deng, H.; Wang, H.M. Jamming Aided Covert Communication With Multiple Receivers. IEEE Trans. Wirel. Commun. 2021, 20, 4480–4494. [Google Scholar] [CrossRef]
- Lu, X.; Hossain, E.; Shafique, T.; Feng, S.; Jiang, H.; Niyato, D. Intelligent Reflecting Surface Enabled Covert Communications in Wireless Networks. IEEE Netw. 2020, 34, 148–155. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, S.; Yang, W.; Huang, Y.; Liu, C. Energy-Efficient Covert Communications for Bistatic Backscatter Systems. IEEE Trans. Veh. Commun. 2021, 70, 2906–2911. [Google Scholar] [CrossRef]
- Liu, J.; Yu, J.; Chen, X.; Zhang, R.; Wang, S.; An, J. Covert Communication in Ambient Backscatter Systems With Uncontrollable RF Source. IEEE Trans. Commun. 2022, 70, 1971–1983. [Google Scholar] [CrossRef]
- Ma, W.; Niu, Z.; Wang, W.; He, S.; Jiang, T. Covert Communication With Uninformed Backscatters in Hybrid Active/Passive Wireless Networks: Modeling and Performance Analysis. IEEE Trans. Commun. 2022, 70, 2622–2634. [Google Scholar] [CrossRef]
- Wu, C.; Yan, S.; Zhou, X.; Chen, R.; Sun, J. Intelligent Reflecting Surface (IRS)-Aided Covert Communication With Warden’s Statistical CSI. IEEE Wirel. Commun. Lett. 2021, 10, 1449–1453. [Google Scholar] [CrossRef]
- Lv, L.; Wu, Q.; Li, Z.; Ding, Z.; Al-Dhahir, N.; Chen, J. Covert Communication in Intelligent Reflecting Surface-Assisted NOMA Systems: Design, Analysis, and Optimization. IEEE Trans. Wirel. Commun. 2022, 21, 1735–1750. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Si, J.; Li, Z.; Zhao, Y.; Cheng, J.; Guan, L.; Shi, J.; Al-Dhahir, N. Covert Transmission Assisted by Intelligent Reflecting Surface. IEEE Trans. Commun. 2021, 69, 5394–5408. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, S.; Wu, Q.; Shu, F.; Kwan Ng, D.W. Joint Transmit Power and Reflection Beamforming Design for IRS-Aided Covert Communications. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar]
- Tatar Mamaghani, M.; Hong, Y. Aerial Intelligent Reflecting Surface-Enabled Terahertz Covert Communications in Beyond-5G Internet of Things. IEEE Internet Things J. 2022, 9, 19012–19033. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.; An, J.; Xiong, Z.; Xing, C.; Zhao, N.; Niyato, D. Covert Communication Assisted by UAV-IRS. IEEE Trans. Commun. 2023, 71, 357–369. [Google Scholar] [CrossRef]
- Wang, S.Y.; Bloch, M.R. Covert MIMO Communications Under Variational Distance Constraint. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4605–4620. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D. Covert communication gains from adversary’s ignorance of transmission time. IEEE Trans. Wirel. Commun. 2016, 15, 8394–8405. [Google Scholar] [CrossRef]
- Chen, W.; Ding, H.; Wang, S.; Gong, F. On the limits of covert ambient backscatter communications. IEEE Wirel. Commun. Lett. 2021, 11, 308–312. [Google Scholar] [CrossRef]
- Lehmann, E.L.; Romano, J.P.; Casella, G. Testing Statistical Hypotheses; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3. [Google Scholar]
- Yan, S.; Cong, Y.; Hanly, S.V.; Zhou, X. Gaussian Signalling for Covert Communications. IEEE Trans. Wirel. Commun. 2019, 18, 3542–3553. [Google Scholar] [CrossRef]
- Yan, S.; He, B.; Zhou, X.; Cong, Y.; Swindlehurst, A.L. Delay-Intolerant Covert Communications With Either Fixed or Random Transmit Power. IEEE Trans. Inf. Forensics Secur. 2019, 14, 129–140. [Google Scholar] [CrossRef]
Scenario | A | B | n | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.7 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 100,000 | null | null | |
2 | 0.5 | 0.7 | 0.3 | 0.6 | 0.7 | 0.3 | 100,000 | |||
3 | 0.5 | 0.7 | 0.3 | 0.6 | 0.7 | 0.3 | 100,000 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Ji, X.; Zhu, R.; He, X.; Qiao, S. Optimization of Intelligent-Reflecting-Surface-Enabled Covert Communication in Multi-Sensor Systems. Appl. Sci. 2024, 14, 1727. https://doi.org/10.3390/app14051727
Feng H, Ji X, Zhu R, He X, Qiao S. Optimization of Intelligent-Reflecting-Surface-Enabled Covert Communication in Multi-Sensor Systems. Applied Sciences. 2024; 14(5):1727. https://doi.org/10.3390/app14051727
Chicago/Turabian StyleFeng, Huiru, Xiaopeng Ji, Ruizhi Zhu, Xinrui He, and Sen Qiao. 2024. "Optimization of Intelligent-Reflecting-Surface-Enabled Covert Communication in Multi-Sensor Systems" Applied Sciences 14, no. 5: 1727. https://doi.org/10.3390/app14051727
APA StyleFeng, H., Ji, X., Zhu, R., He, X., & Qiao, S. (2024). Optimization of Intelligent-Reflecting-Surface-Enabled Covert Communication in Multi-Sensor Systems. Applied Sciences, 14(5), 1727. https://doi.org/10.3390/app14051727