Tin (Sn) Geochemical Mapping Based on a Fixed-Value Method: A Case Illustration in Gejiu Area, Southwest China
Abstract
:1. Introduction
2. Materials
3. Traditional Geochemical Mapping
3.1. The Cumulative-Frequency Method
3.2. The Logarithmic Interval Method
3.3. The Avg±k∗Std Method
4. The Fixed-Value Method of Sn Geochemical Mapping
5. Discussion
5.1. Theoretical Comparison of the Employed Methods
5.2. Comparison of Methods in the Gejiu Area
6. Conclusions
- (1)
- To overcome the limitations of traditional methods, which depend on the amount of data, a fixed-value method was proposed with 18 fixed Sn concentration values ranging from the detection limit to the cutoff grade to contour a geochemical Sn map with 19 levels and six color tones;
- (2)
- With six color tones corresponding to low backgrounds, high backgrounds, low anomalies, high anomalies, mineralization in placer types, and mineralization in hard-rock types, the fixed-value method is superior to traditional methods, which are usually represented by three colors (from blue to yellow, then to red) that correspond to low, medium, and high values;
- (3)
- Although the four discussed methods of Sn geochemical mapping are all feasible for Sn deposit exploration in the Gejiu area, the presented fixed-value method is more meaningful.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, C.; Liu, P.; Luo, X.; Wen, M.; Huang, W.; Liu, G.; Wu, X.; Chen, Z.; Albanese, S. Application of compositional data analysis in geochemical exploration for concealed deposits: A case study of Ashele copper-zinc deposit, Xinjiang, China. Appl. Geochem. 2021, 130, 104997. [Google Scholar] [CrossRef]
- Li, J.; Gong, Q.; Zhang, B.; Liu, N.; Wu, X.; Yan, T.; Li, X.; Wu, Y. Construction, Test and Application of a Tungsten Metallogene Named MGW11: Case Studies in China. Appl. Sci. 2023, 13, 606. [Google Scholar] [CrossRef]
- Gong, Q.; Liu, N.; Wu, X.; Yan, T.; Fan, T.; Li, X.; Liu, M.; Li, R.; Albanese, S. Using regional geochemical survey data to trace anomalous samples through geochemical genes: The Tieshanlong tungsten deposit area (Southeastern China) case study. J. Geochem. Explor. 2020, 219, 106637. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Chi, Q.; Tian, M. Spatial variations in soil organic carbon, nitrogen, phosphorus contents and controlling factors across the “Three Rivers” region of southwest China. Sci. Total Environ. 2021, 794, 148795. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Fu, Y.; Hou, Q.; Xia, X.; Yan, B.; Yang, Z. Soil organic carbon increase in semi-arid regions of China from 1980s to 2010s. Appl. Geochem. 2020, 116, 104575. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, H. Sixty years of exploration geochemistry in China. J. Geochem. Explor. 2014, 139, 4–8. [Google Scholar] [CrossRef]
- Li, M.; Xi, X.; Xiao, G.; Cheng, H.; Yang, Z.; Zhou, G.; Ye, J.; Li, Z. National multipurpose regional geochemical survey in China. J. Geochem. Explor. 2014, 139, 20–29. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Nie, L.; Wang, W.; Zhou, J.; Xu, S.; Chi, Q.; Liu, D.; Liu, H.; Han, Z.; et al. Mapping chemical earth program: Progress and challenge. J. Geochem. Explor. 2020, 217, 106578. [Google Scholar] [CrossRef]
- Yan, T.; Wang, X.; Liu, D.; Chi, Q.; Zhou, J.; Xu, S.; Zhang, B.; Nie, L.; Wang, W. Continental-scale spatial distribution of chromium (Cr) in China and its relationship with ultramafic-mafic rocks and ophiolitic chromite deposit. Appl. Geochem. 2021, 126, 104896. [Google Scholar] [CrossRef]
- Xiang, Y.; Mu, X.; Ren, T.; Ma, Z.; Liu, R.; Gong, Q.; Wang, M.; Gong, J.; Yang, W.; Yang, Y.; et al. Application of Geochemical Survey Data on Potential Evaluation of Mineral Resources in China; Geological Publishing House: Beijing, China, 2018; pp. 1–445. [Google Scholar]
- Lin, X.; Meng, G.; Pan, H.; Cheng, Z.; Yao, W.; Cheng, X. Continental-scale stream sediment geochemical mapping in southern China: An insight into surface processes and tectonic framework. J. Geochem. Explor. 2019, 207, 106362. [Google Scholar] [CrossRef]
- DZ/T 0145-2017; Code of Practice for Soil Geochemical Survey. Geological Publishing House: Beijing, China, 2017.
- DZ/T 0011-2015; Specification of Geochemical Reconnaissance Survey (1:50,000). Geological Publishing House: Beijing, China, 2015.
- An, Y.; Yan, T.; Gong, Q.; Wang, X.; Huang, Y.; Zhang, B.; Liu, N. Chromium (Cr) geochemical mapping based on fixed-values’ method: Case studies in China. Appl. Geochem. 2022, 136, 105168. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, Q.; Liu, N.; Wu, X.; Yan, T.; Xu, S.; Li, W. Classification of geological materials on geochemical lithogenes: Illustration on a case study in Gejiu area of Yunnan Province, China. Appl. Geochem. 2022, 146, 105460. [Google Scholar] [CrossRef]
- Lin, B. Content characteristics of ore-forming elements of plants in Malage tin ore field, Yunnan. J. Guilin Coll. Geol. 1991, 11, 98. [Google Scholar]
- Wang, R.; Yin, C. Geochemical assessment of metallogeny in the west part Songshujiao Sn-deposit in Gejiu, Yunnan Province. Contrib. Geol. Miner. Resour. Res. 1988, 3, 1–11. [Google Scholar]
- Guo, J.; Zhang, R.; Li, C. Genesis of the Gaosong Sn–Cu deposit, Gejiu district, SW China: Constraints from in situ LA-ICP-MS cassiterite U–Pb dating and trace element fingerprinting. Ore Geol. Rev. 2018, 92, 627–642. [Google Scholar] [CrossRef]
- Yang, Z.; Mao, J.; Chen, M.; Tong, X.; Wu, J.; Cheng, Y.; Zhao, H. 40Ar-39Ar dating of muscovite from Laochang veinlet-like Sn deposit in Gejiu tin polymetallic ore district and its geological significance. Miner. Depos. 2009, 28, 336–344. [Google Scholar]
- Ma, L.; Cai, Y.; Liu, X.; Xu, J.; Zhou, Y.; Xu, X. Chemical composition of biotite from the Gejiu granite, Yunnan province: Implication for petrogenesis and mineralization of Kafang tin polymetallic deposit. Geol. J. China Univ. 2018, 24, 692–701. [Google Scholar]
- Jia, R. Study on Geology and Geochemistry of Gejiu Sn Ore Concentration Area in Yunnan Province; Northwest University: Xi’an, China, 2005; pp. 1–150. [Google Scholar]
- Gong, Q.; Yan, T.; Liu, R.; Wu, X.; Xiang, Y.; Xu, S.; Zhou, W.; Dong, X.; Cheng, L.; Yu, M. Geochemical Exploration Models for Typical Tin Deposits in China; Metallurgical Industry Press: Beijing, China, 2022; pp. 1–180. (In Chinese) [Google Scholar]
- Yan, T.; Liu, D.; Si, C.; Qiao, Y. Coupled U-Pb geochronology of monazite and zircon for the bozhushan batholith, southeast yunnan province, China: Implications for regional metallogeny. Minerals 2020, 10, 239. [Google Scholar] [CrossRef]
- Xu, S.; Huang, Z.; Huang, J.; Wu, S.; Dao, Y.; Chen, Z.; Yang, B.; Xu, Y.; Liu, N.; Gong, Q. Environmental Pollution Assessment of Heavy Metals in Soils and Crops in Xinping Area of Yunnan Province, China. Appl. Sci. 2023, 13, 10810. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, Z.; Yu, T.; Xia, X.; Cheng, H.; Zhou, G. Geochemical Parameters of Chinese Soils; Geological Press: Beijing, China, 2020; pp. 1–3172. [Google Scholar]
- DZ/T 0208-2002; Specifications for Placer (Metallic Mineral) Exploration. Geological Publishing House: Beijing, China, 2003.
- DZ/T 0201-2002; Specifications for Wolfram, Stannum, Mercury and Antimony Mineral Exploration. Geological Publishing House: Beijing, China, 2002.
Parameters | Data Amount | Minimum | Lower Quartile (Q1) | Median (Q2) | Upper Quartile (Q3) | Maximum | Average (Avg) | Standard Deviation (Std) |
---|---|---|---|---|---|---|---|---|
Sn | 1170 | 0.2 | 4.4 | 7.4 | 17 | 7760 | 90 | 468 |
lgSn | 1170 | −0.67 | 0.64 | 0.87 | 1.23 | 3.89 | 1.025 | 0.624 |
lgSn (1) | 1074 | −0.15 | 0.61 | 0.83 | 1.10 | 1.95 | 0.88 | 0.36 |
Sn (2) | 1074 | 0.7 | 4.1 | 6.7 | 12.5 | 88.4 | 11.2 | 12.4 |
No. | Method Name | Level No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Cumulative frequency | % | 0 | 0.5 | 1.2 | 2 | 3 | 4.5 | 8 | 15 | 25 | 40 | 60 | 75 | 85 | 92 | 95.5 | 97 | 98 | 98.8 | 99.5 | 100 |
Sn | min | 1.1 | 1.5 | 2.0 | 2.2 | 2.3 | 2.9 | 3.6 | 4.4 | 6.0 | 10 | 17 | 30 | 100 | 350 | 850 | 1200 | 1923 | 3178 | max | ||
lgSn | - | 0.041 | 0.18 | 0.30 | 0.34 | 0.36 | 0.46 | 0.56 | 0.64 | 0.78 | 1.00 | 1.23 | 1.48 | 2.00 | 2.54 | 2.93 | 3.08 | 3.28 | 3.50 | - | ||
ΔlgSn | - | 0.13 | 0.12 | 0.04 | 0.02 | 0.10 | 0.09 | 0.09 | 0.13 | 0.22 | 0.23 | 0.25 | 0.52 | 0.54 | 0.39 | 0.15 | 0.20 | 0.22 | - | |||
2 | Logarithmic interval | lgSn | lgmin | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | lgmax |
Sn | min | 1.0 | 1.25 | 1.6 | 2 | 2.5 | 3.2 | 4 | 5 | 6.3 | 8 | 10 | 12.5 | 16 | 20 | 25 | 32 | 40 | 50 | max | ||
ΔlgSn | - | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | - | ||
3 | Avg±k∗Std | lgSn | lgmin | −0.20 | −0.11 | −0.02 | 0.07 | 0.16 | 0.34 | 0.52 | 0.70 | 0.88 | 1.06 | 1.24 | 1.42 | 1.60 | 1.69 | 1.78 | 1.87 | 1.96 | 2.05 | lgmax |
k | - | −3 | −2.75 | −2.5 | −2.25 | −2 | −1.5 | −1 | −0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.25 | 2.5 | 2.75 | 3 | 3.25 | - | ||
Sn | min | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 | 2.2 | 3.3 | 5.6 | 7.6 | 11 | 17 | 26 | 40 | 49 | 60 | 74 | 91 | 112 | max | ||
ΔlgSn | - | - | 0.09 | 0.09 | 0.09 | 0.09 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | - | ||
- | - | Color | - | |||||||||||||||||||
R | - | 0 | 7 | 17 | 27 | 37 | 52 | 85 | 130 | 176 | 217 | 244 | 255 | 255 | 255 | 249 | 227 | 175 | 146 | 127 | ||
G | - | 0 | 45 | 93 | 136 | 196 | 221 | 244 | 255 | 255 | 255 | 230 | 184 | 138 | 94 | 54 | 22 | 21 | 30 | 7 | ||
B | - | 172 | 215 | 234 | 246 | 255 | 255 | 255 | 221 | 176 | 127 | 81 | 45 | 23 | 17 | 10 | 0 | 44 | 22 | 0 |
Level No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sn | min | 1 | 1.3 | 1.8 | 2.7 | 3.4 | 4.3 | 6.0 | 7.9 | 10 | 13 | 17 | 28 | 50 | 100 | 200 | 400 | 600 | 1000 | max |
lgSn | - | 0 | 0.114 | 0.255 | 0.431 | 0.531 | 0.633 | 0.778 | 0.898 | 1.0 | 1.114 | 1.23 | 1.447 | 1.699 | 2.0 | 2.301 | 2.602 | 2.778 | 3.0 | - |
ΔlgSn | - | 0.114 | 0.141 | 0.176 | 0.100 | 0.102 | 0.145 | 0.119 | 0.102 | 0.114 | 0.117 | 0.217 | 0.252 | 0.301 | 0.301 | 0.301 | 0.176 | 0.222 | - | |
Color | ||||||||||||||||||||
R | 0 | 9 | 28 | 54 | 128 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 254 | 249 | 216 | 191 | 135 | 100 | 0 | |
G | 0 | 46 | 140 | 224 | 255 | 230 | 223 | 211 | 198 | 229 | 204 | 153 | 92 | 57 | 35 | 191 | 135 | 100 | 0 | |
B | 170 | 216 | 248 | 255 | 224 | 153 | 127 | 76 | 25 | 255 | 255 | 255 | 18 | 9 | 0 | 191 | 135 | 100 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Li, J.; Zhang, X.; Huang, Z.; Huang, Y.; Long, Y.; Xu, Y.; Song, X.; Chen, Z.; Li, Y.; et al. Tin (Sn) Geochemical Mapping Based on a Fixed-Value Method: A Case Illustration in Gejiu Area, Southwest China. Appl. Sci. 2024, 14, 1765. https://doi.org/10.3390/app14051765
Xu S, Li J, Zhang X, Huang Z, Huang Y, Long Y, Xu Y, Song X, Chen Z, Li Y, et al. Tin (Sn) Geochemical Mapping Based on a Fixed-Value Method: A Case Illustration in Gejiu Area, Southwest China. Applied Sciences. 2024; 14(5):1765. https://doi.org/10.3390/app14051765
Chicago/Turabian StyleXu, Shengchao, Jie Li, Xiaobing Zhang, Zhao Huang, Yuanyou Huang, Yujiang Long, Yongqiang Xu, Xufeng Song, Zheng Chen, Yuanbin Li, and et al. 2024. "Tin (Sn) Geochemical Mapping Based on a Fixed-Value Method: A Case Illustration in Gejiu Area, Southwest China" Applied Sciences 14, no. 5: 1765. https://doi.org/10.3390/app14051765
APA StyleXu, S., Li, J., Zhang, X., Huang, Z., Huang, Y., Long, Y., Xu, Y., Song, X., Chen, Z., Li, Y., Hou, Z., & Gong, Q. (2024). Tin (Sn) Geochemical Mapping Based on a Fixed-Value Method: A Case Illustration in Gejiu Area, Southwest China. Applied Sciences, 14(5), 1765. https://doi.org/10.3390/app14051765