A Digital 4D Information System on the World Scale: Research Challenges, Approaches, and Preliminary Results
Abstract
:1. Introduction
1.1. Motivation
1.1.1. Cultural Tourism as the Application Scenario
- During a visit, XR applications can help guide visitors through the city [25], offer virtual city tours [27,28], provide information about the city’s history and also about amenities (e.g., restaurants) [36], allow users to obtain a virtual view of temporal changes, historical spaces, buildings, and monuments [9,29,30,31,32], and provide a visual impression of hidden or covered parts [28,33].
- Following a visit, XR applications can assist users in recalling tours and visits, or provide access to places that visitors have not been able to visit [25].
1.1.2. Browsing Collections
1.2. The Vision
- To enable visual 4D impressions and access to further information (e.g., Wikipedia articles about landmarks).
- To work on mobile and desktop devices to enable both location-based and remote access to information.
- To function in a browser rather than a native app, since the mentioned application scenarios target occasional use on different devices [56].
- The world scale, created via an automated pipeline based on historical photographs and map data retrieved from various large-scale data sources.
- Tools that operate on application layers with minimal data infrastructure.
- The ability to retrieve information on the fly from multiple open data endpoints.
2. State of the Art
2.1. Data Collection
2.1.1. Citizen Science and Crowdsourcing
2.1.2. Data Retrieval
2.1.3. Teaching Digital Competencies via Heritage
2.1.4. Summary: Retrieval Challenges
- Despite a large amount of digital and digitized data, a major issue is the findability and missing information about spatial and temporal properties (e.g., the viewport).
- Crowdsourced data collections are particularly well established, but challenging with regard to engaging users on a large scale.
- Teaching digital skills via heritage is frequently used but a consensus is lacking on educational paradigms and methods.
2.2. Four-Dimensional Modelling
2.2.1. Human-Driven 3D Reconstruction
2.2.2. Algebraic Approaches
2.2.3. Machine Learning and Hybrid Methods
2.2.4. Structure Recognition from Plan Data
2.2.5. Generative Modelling
2.2.6. Time
2.2.7. Transparency and Explainable Artificial Intelligence
2.2.8. Summary: 3D/4D Reconstruction Challenges
- Three/four-dimensional modelling processes have to deal with non-linear historical spatial situations and must gain information from time-varying singular historical sources of heterogeneous quality.
- Most approaches to automate the 3D/4D modelling process are optimized for specific purposes and therefore unable to cope with sparse samples and to detect differences with small variations.
2.3. Visualization
2.3.1. Visualization Technologies
2.3.2. Interaction and Motivational Design
2.3.3. Visual Design and Perception of 3D/4D Content
2.3.4. Summary: 3D/4D Visualization Challenges
- Current visualization technologies lack the capability for large-scale 4D architectural and city visualizations.
- It is rarely empirically investigated what visual qualities are required to enable suitable interactive 3D/4D visualizations of past architecture in specific scenarios.
3. Workflow Design
3.1. Data Collection
3.2. Four-Dimensional Modelling
3.3. Visualization
4. Results
4.1. Data Collection
4.1.1. Crowdsourced Data Collection
- If the photos were digitized, they could be uploaded from within the application.
- If the photos were still in analogue form, they could either be photographed directly within the application or submitted at various collection points such as the Jena City Museum and the Thuringian State and University Library (Thulb). Especially for larger quantities, the images were digitized at Thulb and then we transferred them to the application database.
- To determine the position of the historical photos, citizens were also asked to “rephotograph” images that were already in the database. To do this, the participants had to identify where the respective historical photo was taken and position themselves so as to take a new photo from the same viewpoint and angle. The corresponding information about geolocation, etc., was then automatically transferred from the mobile device to the database and used to project the images on the models.
4.1.2. Crowdsourced 3D Digitization
4.1.3. Data Retrieval
4.1.4. Student Hackathons
4.1.5. Content Creation by School Children
4.2. Data Processing
4.2.1. Building Footprint Extraction from Historical Maps
4.2.2. Spatialization of Contemporary and Historical Photographs
Image Processing for Contemporary Photographs
- As there are always three images taken at one position, we assume a field of view (FOV) of 120°.
- As only one angle is given, we assume that this is the rotation around the yaw axis. We assume that the other two angles are close to 0°.
- As the height coordinate of the image is not given, we estimate the respective elevation using the API of opentopodata.org and the EU digital elevation model EU-DEM with 25 m resolution. We add 2 m to the retrieved height because Google’s camera is usually mounted on a car.
Image Orientation for Historical Photographs
4.2.3. Parametric Modelling
- The center of the roof (midpoint between two coordinates from Cartesian extents of the shape).
- The direction in which the tilt should be created (angle given by longest edge in the shape).
- Gabled/hipped: First, the center of the roof and direction is determined. Next, based on the depth of the geometry (peak point, direction, and outer shape), the highest edge is created, and then the geometry is extruded.
- Skillion: First, the angle of the roof and the pitch is determined. Then, the higher part is extrapolated to the pitch point and the slope faces are added.
- Dome/onion: First, the largest circle within the points and its center are determined. Based on this, a sphere geometry is created and scaled according to the scale (height). For onion domes, this has to be raised by an additional radius.
- Pyramidal: First, the center of the shape is determined. Then, a pyramid geometry at the center point and level height is created.
- Cone: First, the center and number of points of the shape are determined. Then, a cone geometry at the center point, with the height of the levels and base equal to the roof shape, is created.
- Flat: the same shape as the input is created with a height at a given level.
4.2.4. Generation of Historical 3D/4D Models
4.2.5. Data Enrichment with Textual Information
4.3. Data Visualization
4.3.1. Backend Application
4.3.2. Features of the Mobile Application
Projective Texturing
UX
4.3.3. Four-Dimensional Browser Features and Visualizations
User Study
- Identifying buildings in a photograph.
- Gathering information for a building (footprint, roof shape) and finding images from all sides of the building.
- Analyzing which perspective of a building was most frequently photographed.
- Analyzing differences between a digitized painting and the city skyline.
- Comparing the ways two photographers staged a certain building.
- Reconstructing the biography of a building.
- Identifying a certain statue in a photograph.
Limitations
5. Demo Cases
5.1. Dresden
5.2. Jena
5.3. Amsterdam
5.4. Worldwide
6. Future Prospects
6.1. Data Collection
6.2. Four-Dimensional Modelling
6.3. Visualization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burke, P. Augenzeugenschaft: Bilder als Historische Quellen; Wagenbach: Berlin, Germany, 2003. [Google Scholar]
- Paul, G. Von der Historischen Bildkunde zur Visual History. In Visual History: Ein Studienbuch; Vandenhoeck & Ruprecht: Göttingen, Germany, 2006; pp. 7–36. [Google Scholar]
- Pérez-Gómez, A.; Pelletier, L. Architectural Representation and the Perspective Hinge; Mit Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Münster, S.; Maiwald, F.; Lehmann, C.; Lazariv, T.; Hofmann, M.; Niebling, F. An Automated Pipeline for a Browser-based, City-scale Mobile 4D VR Application based on Historical Images. In Proceedings of the 2nd Workshop on Structuring and Understanding of Multimedia heritAge Contents, Seattle, WA, USA, 12 October 2020; pp. 33–40. [Google Scholar]
- Muenster, S.; Bruschke, J.; Maiwald, F.; Kleiner, C. Software and Content Design of a Browser-based Mobile 4D VR Application to Explore Historical City Architecture. In Proceedings of the 3rd Workshop on Structuring and Understanding of Multimedia heritAge Contents, Virtual Event, 20 October 2021; pp. 13–22. [Google Scholar]
- Münster, S.; Lehmann, C.; Lazariv, T.; Maiwald, F.; Karsten, S. Toward an Automated Pipeline for a Browser-Based, City-Scale Mobile 4D VR Application Based on Historical Images. In Research and Education in Urban History in the Age of Digital Libraries; UHDL, 2019; Niebling, F., Münster, S., Messemer, H., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 106–128. [Google Scholar]
- Münster, S.; Kamposiori, C.; Friedrichs, K.; Kröber, C. Image libraries and their scholarly use in the field of art and architectural history. Int. J. Digit. Libr. 2018, 19, 367–383. [Google Scholar] [CrossRef]
- ViMM WG 2.2. Meaningful Content Connected to the Real World (Unpublished Report). 2017.
- Bekele, M.K.; Pierdicca, R.; Frontoni, E.; Malinverni, E.S.; Gain, J. A Survey of Augmented, Virtual, and Mixed Reality for Cultural Heritage. Acm J. Comput. Cult. Herit. 2018, 11, 7. [Google Scholar] [CrossRef]
- Daniela, L. Virtual Museums as Learning Agents. Sustainability 2020, 12, 2698. [Google Scholar] [CrossRef]
- Siddiqui, M.S.; Syed, T.; Nadeem Al Hassan, A.; Nawaz, W.; Alkhodre, A. Virtual Tourism and Digital Heritage: An Analysis of VR/AR Technologies and Applications. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 303–315. [Google Scholar] [CrossRef]
- Münster, S. Militärgeschichte aus der digitalen Retorte—Computergenerierte 3D-Visualisierung als Filmtechnik. In Mehr als Krieg und Leidenschaft; Die Filmische Darstellung von Militär und Gesellschaft der Frühen Neuzeit (2011/2); Kästner, A., Mazerath, J., Eds.; Universitätsverlag Potsdam: Potsdam, Germany, 2011; pp. 457–486. [Google Scholar]
- Ott, M.; Pozzi, F. Towards a new era for Cultural Heritage Education: Discussing the role of ICT. Comput. Hum. Behav. 2011, 27, 1365–1371. [Google Scholar] [CrossRef]
- Flaten, A. Ashes2Art: A Pedagogical Case Study in Digital Humanities. In Proceedings of the 36th CAA Conference, Budapest, Hungary, 2–6 April 2008. [Google Scholar]
- Sanders, D.H. Virtual Archaeology: Yesterday, Today, and Tomorrow. In Proceedings of the CAA2004, Prato, Italy, 13–17 April 2004. [Google Scholar]
- Fisher, C.R.; Terras, M.; Warwick, C. Integrating New Technologies into Established Systems: A case study from Roman Silchester. In Proceedings of the Computer Applications to Archaeology 2009 Williamsburg, Williamsburg, VA, USA, 22–26 March 2009. [Google Scholar]
- Doukianou, S.; Daylamani-Zad, D.; Paraskevopoulos, I. Beyond Virtual Museums: Adopting Serious Games and Extended Reality (XR) for User-Centred Cultural Experiences. In Visual Computing for Cultural Heritage; Liarokapis, F., Voulodimos, A., Doulamis, N., Doulamis, A., Eds.; Springer Series on Cultural Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 283–299. [Google Scholar]
- Haynes, R. Eye of the Veholder: AR Extending and Blending of Museum Objects and Virtual Collections. In Augmented Reality and Virtual Reality; Progress in IS; Springer: Berlin/Heidelberg, Germany, 2018; pp. 79–91. [Google Scholar]
- Ferrara, V.; Macchia, A.; Sapia, S. Reusing cultural heritage digital resources in teaching. In Proceedings of the Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013; pp. 409–412. [Google Scholar]
- Gicquel, P.Y.; Lenne, D.; Moulin, C. Design and use of CALM: An ubiquitous environment for mobile learning during museum visit. In Proceedings of the Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013; pp. 645–652. [Google Scholar]
- Motejlek, J.; Alpay, E. A Taxonomy for Virtual and Augmented Reality in Education. arXiv 2019, arXiv:1906.12051. [Google Scholar]
- Cranmer, E.E.; tom Dieck, M.C.; Jung, T. The role of augmented reality for sustainable development: Evidence from cultural heritage tourism. Tour. Manag. Perspect. 2023, 49, 101196. [Google Scholar] [CrossRef]
- Kim, K.; Seo, B.-K.; Han, J.-H.; Park, J.-I. Augmented reality tour system for immersive experience of cultural heritage. In Proceedings of the 8th International Conference on Virtual Reality Continuum and its Applications in Industry—VRCAI ’09, Yokohama, Japan, 14–15 December 2009; pp. 323–324. [Google Scholar]
- Ioannidi, A.; Gavalas, D.; Kasapakis, V. Flaneur: Augmented exploration of the architectural urbanscape. In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017; pp. 529–533. [Google Scholar]
- Ioannidis, C.; Verykokou, S.; Soile, S.; Boutsi, A.M. A Multi-Purpose Cultural Heritage Data Platform for 4d Visualization and Interactive Information Services. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 583–590. [Google Scholar] [CrossRef]
- Mortara, M.; Catalano, C. 3D Virtual environments as effective learning contexts for cultural heritage. Ital. J. Educ. Technol. 2018, 26, 5–21. [Google Scholar]
- De Fino, M.; Ceppi, C.; Fatiguso, F. Virtual Tours and Informational Models for Improving Territorial Attractiveness and the Smart Management of Architectural Heritage: The 3d-Imp-Act Project. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 44, 473–480. [Google Scholar] [CrossRef]
- Chatzidimitris, T.; Kavakli, E.; Economou, M.; Gavalas, D. Mobile Augmented Reality edutainment applications for cultural institutions. In Proceedings of the 4th International Conference on Information, Intelligence, Systems and Applications, Mikrolimano, Greece, 10–12 July 2013. [Google Scholar]
- Vicent, N.; Rivero Gracia, M.P.; Feliu Torruella, M. Arqueología y tecnologías digitales en Educación Patrimonial. Educ. Siglo XXI 2015, 33, 83–102. [Google Scholar] [CrossRef]
- Petrucco, C.; Agostini, D. Teaching our cultural heritage using mobile augmented reality. J. E-Learn. Knowl. Soc. 2016, 12, 115–128. [Google Scholar]
- Luna, U.; Rivero, P.; Vicent, N. Augmented Reality in Heritage Apps: Current Trends in Europe. Appl. Sci. 2019, 9, 2756. [Google Scholar] [CrossRef]
- Torres, M.; Qiu, G. Picture the Past from the Present. In Proceedings of the 3rd International Conference on Internet Multimedia Computing and Service, Chengdu, China, 5–7 August 2011; pp. 51–54. [Google Scholar]
- Chang, Y.L.; Hou, H.T.; Pan, C.Y.; Sung, Y.T.; Chang, K.E. Apply an Augmented Reality in a Mobile Guidance to Increase Sense of Place for Heritage Places. Educ. Technol. Soc. 2015, 18, 166–178. [Google Scholar]
- Milgram, P.; Takemura, H.; Utsumi, A.; Kishino, F. Augmented Reality: A class of displays on the reality-virtuality continuum. SPIE 1994, 2351, 282–292. [Google Scholar]
- Roya, R.; Azizul, H.; Ozlem, T. Augmented Reality Apps for Tourism Destination Promotion. In Apps Management and E-Commerce Transactions in Real-Time; Sajad, R., Ed.; IGI Global: Hershey, PA, USA, 2017; pp. 236–251. [Google Scholar]
- Tom Dieck, M.C.; Jung, T. A Theoretical Model of Mobile Augmented Reality Acceptance in Urban Heritage Tourism. Curr. Issues Tour. 2018, 21, 154–174. [Google Scholar] [CrossRef]
- Candela, L.; Castelli, D.; Pagano, P. Virtual research environments: An overview and a research agenda. Data Sci. J. 2013, 12, GRDI75–GRDI81. [Google Scholar] [CrossRef]
- Meyer, E.; Grussenmeyer, P.; Perrin, J.P.; Durand, A.; Drap, P. A web information system for the management and the dissemination of Cultural Heritage data. J. Cult. Herit. 2007, 8, 396–411. [Google Scholar] [CrossRef]
- Kuroczynski, P. Virtual Research Environment for digital 3D reconstructions—Standards, thresholds and prospects. Stud. Digit. Herit. 2017, 1, 456–476. [Google Scholar] [CrossRef]
- Friedrichs, K.; Kröber, C.; Bruschke, J.; Münster, S. Creating suitable tools for art and architectural research with digital libraries. In Digital Research and Education in Architectural Heritage. 5th Conference, DECH 2017, and First Workshop, UHDL 2017, Dresden, Germany, 30–31 March 2017, Revised Selected Papers; Münster, S., Friedrichs, K., Niebling, F., Seidel-Grzesinska, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 117–138. [Google Scholar]
- Münster, S.; Jahn, P.-H.; Wacker, M. Von Plan- und Bildquellen zum virtuellen Gebäudemodell. Zur Bedeutung der Bildlichkeit für die digitale 3D-Rekonstruktion historischer Architektur. In Bildlichkeit im Zeitalter der Modellierung. Operative Artefakte in Entwurfsprozessen der Architektur und des Ingenieurwesens; Ammon, S., Hinterwaldner, I., Eds.; Eikones; Wilhelm Fink Verlag: München, Germany, 2017; pp. 255–286. [Google Scholar]
- Brandt, A.V. Werkzeug des Historikers; Kohlhammer: Stuttgart, Germany, 2012. [Google Scholar]
- Wohlfeil, R. Das Bild als Geschichtsquelle. Hist. Z. 1986, 243, 91–100. [Google Scholar] [CrossRef]
- Favro, D. In the eyes of the beholder: Virtual Reality re-creations and academia. In Imaging Ancient Rome: Documentation, Visualization, Imagination: Proceedings of the 3rd Williams Symposium on Classical Architecture, Rome, Italy, 20–23 May 2004; Haselberger, L., Humphrey, J., Abernathy, D., Eds.; Journal of Roman Archaeology: Portsmouth, UK, 2006; pp. 321–334. [Google Scholar]
- Niccolucci, F.; Hermon, S. A Fuzzy Logic Approach to Reliability in Archaeological Virtual Reconstruction. In Beyond the Artifact: Digital Interpretation of the Past. Proceedings of CAA2004, Prato, Italy, 13–17 April 2004; Niccolucci, F., Hermon, S., Eds.; Archaeolingua: Budapest, Hungary, 2010; pp. 28–35. [Google Scholar]
- Bürger, S. Unregelmässigkeit als Anreiz zur Ordnung oder Impuls zum Chaos. Die virtuose Steinmetzkunst der Pirnaer Marienkirche. Z. Kunstgesch. 2011, 74, 123–132. [Google Scholar]
- Andersen, K. The Geometry of an Art. In The History of the Mathematical Theory of Perspective from Alberti to Monge; Springer: New York, NY, USA, 2007. [Google Scholar]
- Beaudoin, J.E. An Investigation of Image Users across Professions: A Framework of Their Image Needs, Retrieval and Use; Drexel University: Philadelphia, PA, USA, 2009. [Google Scholar]
- European Union. Now Online: “Europeana”, Europe’s Digital Library (IP/08/XXX); European Union: Brussels, Belgium, 2008. [Google Scholar]
- Heine, K.; Brasse, C.; Wulf, U. WWW-Based Building Information System for “Domus Severiana” Palace at Palatine in Rome by Open Source Software. In Proceedings of the 7th International conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage, Nicosia, Cyprus, 3 October–4 November 2006; pp. 75–82. [Google Scholar]
- Wulf, U.; Riedel, A. Investigating buildings three-dimensionally. The “Domus Severiana” on the Palatine. In Imaging Ancient Rome: Documentation, Visualization, Imagination, Proceedings of the 3rd Williams Symposium on Classical Architecture, Rome, Italy, 20–23 May 2004; Haselberger, L., Humphrey, J., Abernathy, D., Eds.; Journal of Roman Archaeology: Portsmouth, UK, 2006; pp. 221–233. [Google Scholar]
- Messaoudi, T.; Veron, P.; Halin, G.; De Luca, L. An ontological model for the reality- based 3D annotation of heritage building conservation state. J. Cult. Herit. 2018, 29, 100–112. [Google Scholar] [CrossRef]
- Glaessgen, E.; Stargel, D. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Jaillot, V. 3D, Temporal and Documented Cities: Formalization, Visualization and Navigation; HAL: Lyon, France, 2020. [Google Scholar]
- Zhang, X.; Yang, D.; Yow, C.; Huang, L.; Wu, X.; Huang, X.; Guo, J.; Zhou, S.; Cai, Y. Metaverse for Cultural Heritages. Electronics 2022, 11, 3730. [Google Scholar] [CrossRef]
- Jobe, W. Native Apps vs. Mobile Web Apps. Int. J. Interact. Mob. Technol. 2013, 7, 27–32. [Google Scholar] [CrossRef]
- Gura, T. Citizen science: Amateur experts. Nature 2013, 496, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Bonacchi, C.; Bevan, A.; Pett, D.; Keinan-Schoonbaert, A.; Sparks, R.; Wexler, J.; Wilkin, N. Crowd-sourced Archaeological Research: The MicroPasts Project. Archaeol. Int. 2014, 17, 61–68. [Google Scholar] [CrossRef]
- Vincent, M.L.; Gutierrez, M.F.; Coughenour, C.; Manuel, V.; Bendicho, L.-M.; Remondino, F.; Fritsch, D. Crowd-sourcing the 3D digital reconstructions of lost cultural heritage. In Proceedings of the Digital Heritage, Granada, Spain, 28 September–2 October 2015; pp. 171–172. [Google Scholar]
- Gerth, B.; Berndt, R.; Havemann, S.; Fellner, D.W. 3D Modeling for Non-Expert Users with the Castle Construction Kit v0.5. In 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST 2005); Mudge, M., Ryan, N., Scopigno, R., Eds.; Eurographics Association: Pisa, Italy, 2005; pp. 49–57. [Google Scholar]
- Umweltbundesamt. Konzept zur Anwendbarkeit von Citizen Science in der Ressortforschung des Umweltbundesamtes; Umweltbundesamt: Dessau-Roßlau, Germany, 2017. [Google Scholar]
- Popple, S.; Mutibwa, D.H. Tools You Can Trust? Co-design in Community Heritage Work. In Cultural Heritage in a Changing World; Borowiecki, K.J., Forbes, N., Fresa, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 197–214. [Google Scholar]
- Claisse, C.; Ciolfi, L.; Petrelli, D. Containers of Stories: Using co-design and digital augmentation to empower the museum community and create novel experiences of heritage at a house museum. Des. J. 2017, 20, S2906–S2918. [Google Scholar] [CrossRef]
- Avram, G.; Maye, L. Co-designing Encounters with Digital Cultural Heritage. In Proceedings of the 2016 ACM Conference Companion Publication on Designing Interactive Systems, Brisbane, Australia, 4–8 June 2016; pp. 17–20. [Google Scholar]
- Cyberpiper. 1867 Historical Role Play. Available online: https://www.roblox.com/games/3030166262/1867-Historical-Role-Play (accessed on 29 January 2022).
- Münster, S.; Georgi, C.; Heijne, K.; Klamert, K.; Nönnig, J.R.; Pump, M.; Stelzle, B.; Meer, H.V.D. How to involve inhabitants in urban design planning by using digital tools? An overview on a state of the art, key challenges and promising approaches. Procedia Comput. Sci. 2017, 112, 2391–2405. [Google Scholar] [CrossRef]
- Elliott, K.C.; Rosenberg, J. Philosophical Foundations for Citizen Science. Citiz. Sci. Theory Pract. 2019, 4, 9. [Google Scholar] [CrossRef]
- Prats López, M.; Soekijad, M.; Berends, H.; Huysman, M. A Knowledge Perspective on Quality in Complex Citizen Science. Citiz. Sci. Theory Pract. 2020, 5, 15. [Google Scholar] [CrossRef]
- Bonney, R.; Ballard, H.; Jordan, R.; McCallie, E.; Phillips, T.; Shirk, J. Public Participation in Scientific Research: Defining the Field and Assessing Its Potential for Informal Science Education; A CAISE Inquiry Group Report; ERIC: Washington, DC, USA, 2009. [Google Scholar]
- May, M.J.; Kantor, E.; Zror, N. CemoMemo: Making More Out of Gravestones (With Help from the Crowd). Acm J. Comput. Cult. Herit. 2021, 14, 57. [Google Scholar] [CrossRef]
- Roche, J.; Bell, L.; Galvao, C.; Golumbic, Y.N.; Kloetzer, L.; Knoben, N.; Laakso, M.; Lorke, J.; Mannion, G.; Massetti, L.; et al. Citizen Science, Education, and Learning: Challenges and Opportunities. Front. Sociol. 2020, 5, 613814. [Google Scholar] [CrossRef] [PubMed]
- Haumann, A.-R.; Smolarski, R. Digital project meets analog community. Expectations and experiences in a digital citizen science project on GDR history. In Proceedings of the Austrian Citizen Science Conference 2020, Vienna, Austria, 14–16 September 2020. [Google Scholar] [CrossRef]
- Capurro, C.; Plets, G.; Verheul, J. Digital heritage infrastructures as cultural policy instruments: Europeana and the enactment of European citizenship. Int. J. Cult. Policy 2023, 1–21. [Google Scholar] [CrossRef]
- Deitke, M.; Liu, R.; Wallingford, M.; Ngo, H.; Michel, O.; Kusupati, A.; Fan, A.; Laforte, C.; Voleti, V.; Gadre, S.Y.; et al. Objaverse-XL: A Universe of 10M+ 3D Objects. Adv. Neural Inf. Process. Syst. 2023, 36. [Google Scholar]
- Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H. Shapenet: An information-rich 3d model repository. arXiv 2015, arXiv:1512.03012. [Google Scholar]
- Flynn, T. Over 100,000 Cultural Heritage Models on Sketchfab. Sketchfab Community Blog 2019, 7. [Google Scholar]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the World from Internet Photo Collection. Int. J. Comput. Vis. 2007, 80, 189–210. [Google Scholar] [CrossRef]
- Wu, X.; Averbuch-Elor, H.; Sun, J.; Snavely, N. Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Stathopoulou, E.K.; Welponer, M.; Remondino, F. Open-Source Image-Based 3d Reconstruction Pipelines: Review, Comparison and Evaluation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W17, 331–338. [Google Scholar] [CrossRef]
- Maiwald, F.; Komorowicz, D.; Munir, I.; Beck, C.; Muenster, S. Semi-automatic generation of historical urban 3D models at a larger scale using Structure-from-Motion, Neural Rendering and historical maps. In Research and Education in Urban History in the Age of Digital Libraries. Third International Workshop, UHDL 2023, Munich, Germany, 27–28 March 2023; Revised Selected Papers; Münster, S., Kröber, C., Pattee, A., Niebling, F., Eds.; Springer CCIS: Cham, Switzerland, 2023. [Google Scholar]
- Münster, S. Advancements in 3D Heritage Data Aggregation and Enrichment in Europe: Implications for Designing the Jena Experimental Repository for the DFG 3D Viewer. Appl. Sci. 2023, 13, 9781. [Google Scholar] [CrossRef]
- Schüller, K.; Busch, P.; Hindinger, C. Future Skills: Ein Framework für Data Literacy. HFD Position Pap. 2019, 47, 297–317. [Google Scholar]
- Alias, M.; Black, T.R.; Gray, D.E. Effect of Instructions on Spatial Visualisation Ability in Civil Engineering Students. Int. Educ. J. 2002, 3, 1–12. [Google Scholar]
- Sprünker, J. Making on-line cultural heritage visible for educational proposes. In Proceedings of the Digital Heritage International Congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013; pp. 405–408. [Google Scholar]
- Kröber, C.; Münster, S. An App for the Cathedral in Freiberg—An Interdisciplinary Project Seminar. In Proceedings of the 11th International Conference on Cognition and Exploratory Learning in Digital Age (CELDA 2014), Porto, Portugal, 25–27 October 2014; pp. 270–274. [Google Scholar]
- Muenster, S. Digital 3D Technologies for Humanities Research and Education: An Overview. Appl. Sci. 2022, 12, 2426. [Google Scholar] [CrossRef]
- Polanyi, M. The Tacit Dimension, 18th ed.; University of Chicago Press: Chicago, IL, USA, 1966. [Google Scholar]
- Münster, S. Workflows and the role of images for a virtual 3D reconstruction of no longer extant historic objects. In Proceedings of the XXIV International CIPA Symposium, Strasbourg, France, 2–6 September 2013; pp. 197–202. [Google Scholar]
- Wallace, M.; Poulopoulos, V.; Antoniou, A.; López-Nores, M. An Overview of Big Data Analytics for Cultural Heritage. Big Data Cogn. Comput. 2023, 7, 14. [Google Scholar] [CrossRef]
- Stylianidis, E.; Remondino, F. 3D Recording, Documentation and Management of Cultural Heritage; Whittles Publishing: Dunbeath, UK, 2016. [Google Scholar]
- Ramos, M.M.; Remondino, F. Data fusion in Cultural Heritage—A Review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 359–363. [Google Scholar] [CrossRef]
- Remondino, F.; Campana, S. 3D Recording and Modelling in Archaeology and Cultural Heritage: Theory and best practices. BAR Int. Ser. 2014, 2598, 111–127. [Google Scholar]
- Storeide, M.; George, S.; Sole, A.; Hardeberg, J.Y. Standardization of digitized heritage: A review of implementations of 3D in cultural heritage. Herit. Sci. 2023, 11, 249. [Google Scholar] [CrossRef]
- Maiwald, F.; Vietze, T.; Schneider, D.; Henze, F.; Münster, S.; Niebling, F. Photogrammetric analysis of historical image repositories for virtual reconstruction in the field of digital humanities. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 447–452. [Google Scholar] [CrossRef]
- ISO. BIM—The Present EN ISO 19650 Standards Provide the Construction Industry with an Approach to Manage and Exchange Information on Projects. Available online: https://group.thinkproject.com/de/ressourcen/bim-standards-und-praktiken/ (accessed on 2 February 2022).
- Münster, S.; Apollonio, F.; Blümel, I.; Fallavollita, F.; Foschi, R.; Grellert, M.; Ioannides, M.; Jahn, P.H.; Kurdiovsky, R.; Kuroczynski, P.; et al. Handbook of Digital 3D Reconstruction of Historical Architecture; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Maiwald, F.; Schneider, D.; Henze, F.; Niebling, F.; Münster, S.; Niebling, F. Feature matching of historical images based on geometry of quadrilaterals. ISPRS Int. Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 643–650. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism: Exploring photo collections in 3D. Acm Trans. Graph. 2006, 25, 835–846. [Google Scholar] [CrossRef]
- Hepp, B.; Niessner, M.; Hilliges, O. Plan3D: Viewpoint and Trajectory Optimization for Aerial Multi-View Stereo Reconstruction. Comput. Vis. Pattern Recognit. (Cs.CV) 2018, 38, 1–17. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F.; Ardissono, L. A Critical Comparison of 3D Digitization Techniques for Heritage Objects. ISPRS Int. J. Geo-Inf. 2020, 10, 10. [Google Scholar] [CrossRef]
- Scan2CAD. Scan2CAD: Learning to Digitize the Real World. Available online: https://cordis.europa.eu/project/id/804724 (accessed on 8 February 2022).
- Torresani, A.; Remondino, F. Videogrammetry Vs Photogrammetry for Heritage 3d Reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1157–1162. [Google Scholar] [CrossRef]
- Rahaman, H. Potogrammetry: What, Where, How. In Virtual Heritage: A Guide; Champion, E., Champion, E., Eds.; Ubiquity Press: London, UK, 2021. [Google Scholar]
- Blettery, E.; Fernandes, N.; Gouet-Brunet, V. How to Spatialize Geographical Iconographic Heritage. In Proceedings of the 3rd Workshop on Structuring and Understanding of Multimedia heritAge Contents, Virtual Event, 20 October 2021; pp. 31–40. [Google Scholar]
- Remondino, F.; Nocerino, E.; Toschi, I.; Menna, F. A Critical Review of Automated Photogrammetric Processing of Large Datasets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 591–599. [Google Scholar] [CrossRef]
- O’Driscoll, J. Landscape applications of photogrammetry using unmanned aerial vehicles. J. Archaeol. Sci. Rep. 2018, 22, 32–44. [Google Scholar] [CrossRef]
- Drap, P. Underwater Photogrammetry for Archaeology. In Special Applications of Photogrammetry; Carneiro da Silva, D., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Grilli, E.; Menna, F.; Remondino, F. A Review of Point Clouds Segmentation and Classification Algorithms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 339–344. [Google Scholar] [CrossRef]
- Goesele, M.; Curless, B.; Seitz, S.M. Multi-view stereo revisited. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2006, 2, 2402–2409. [Google Scholar]
- Seitz, S.M.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; Volume 1, pp. 519–528. [Google Scholar]
- Pomaska, G. Zur Dokumentation und 3D-Modellierung von Denkmalen mit digitalen fotografischen Verfahren. In Von Handaufmaß bis High Tech III—3D in der Historischen Bauforschung; Heine, K., Rheidt, K., Henze, F., Riedel, A., Eds.; Verlag Philipp von Zabern: Mainz, Germany, 2011; pp. 26–32. [Google Scholar]
- Schaffland, A.; Vornberger, O.; Heidemann, G. An Interactive Web Application for the Creation, Organization, and Visualization of Repeat Photographs. In Proceedings of the 1st Workshop on Structuring and Understanding of Multimedia heritAge Contents—SUMAC ‘19, Nice, France, 21 October 2019; pp. 47–54. [Google Scholar]
- Schaffland, A.; Bui, T.H.; Vornberger, O.; Heidemann, G. New Interactive Methods for Image Registration with Applications in Repeat Photography. In Proceedings of the 2nd Workshop on Structuring and Understanding of Multimedia heritAge Contents, Seattle, WA, USA, 12 October 2020; pp. 41–48. [Google Scholar]
- Condorelli, F.; Rinaudo, F. Processing Historical Film Footage with Photogrammetry and Machine Learning for Cultural Heritage Documentation. In Proceedings of the 1st Workshop on Structuring and Understanding of Multimedia heritAge Contents—SUMAC ‘19, Nice, France, 21 October 2019; pp. 39–46. [Google Scholar]
- Maiwald, F. Generation of a Benchmark Dataset Using Historical Photographs for an Automated Evaluation of Different Feature Matching Methods. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 87–94. [Google Scholar] [CrossRef]
- Maiwald, F.; Lehmann, C.; Lazariv, T. Fully Automated Pose Estimation of Historical Images in the Context of 4D Geographic Information Systems Utilizing Machine Learning Methods. Isprs Int. J. Geo-Inf. 2021, 10, 748. [Google Scholar] [CrossRef]
- Yi, K.M.; Trulls, E.; Lepetit, V.; Fua, P. LIFT: Learned Invariant Feature Transform. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 467–483. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Jahrer, M.; Grabner, M.; Bischof, H. Learned local descriptors for recognition and matching. In Proceedings of the Computer Vision Winter Workshop 2008, Moravske Toplice, Slovenia, 4–6 February 2008; Volume 2, pp. 39–46. [Google Scholar]
- Fiorucci, M.; Khoroshiltseva, M.; Pontil, M.; Traviglia, A.; Del Bue, A.; James, S. Machine Learning for Cultural Heritage: A Survey. Pattern Recognit. Lett. 2020, 133, 102–108. [Google Scholar] [CrossRef]
- Münster, S.; Apollonio, F.I.; Bell, P.; Kuroczynski, P.; Di Lenardo, I.; Rinaudo, F.; Tamborrino, R. Digital Cultural Heritage Meets Digital Humanities. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 813–820. [Google Scholar] [CrossRef]
- Bell, P.; Ommer, B. Computer Vision und Kunstgeschichte—Dialog zweier Bildwissenschaften. In Digital Art History; Kuroczynski, P., Bell, P., Dieckmann, L., Eds.; arthistoricum.net: Heidelberg, Germany, 2019; pp. 61–78. [Google Scholar]
- Martinovic, A.; Knopp, J.; Riemenschneider, H.; Van Gool, L. 3d all the way: Semantic segmentation of urban scenes from start to end in 3d. In Proceedings of the IEEE Computer Vision & Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4456–4465. [Google Scholar]
- Hackel, T.; Wegner, J.D.; Schindler, K. Fast semantic segmentation of 3D point clouds with strongly varying density. ISPRS Ann. 2016, 3, 177–184. [Google Scholar]
- Aiger, D.; Allen, B.; Golovinskiy, A. Large-Scale 3D Scene Classification with Multi-View Volumetric CNN. arXiv 2017, arXiv:1712.09216. [Google Scholar]
- n.b. ArchiMediaL. Enriching and Linking Historical Architectural and Urban Image Collections. Available online: http://archimedial.eu (accessed on 17 February 2024).
- Radovic, M.; Adarkwa, O.; Wang, Q.S. Object Recognition in Aerial Images Using Convolutional Neural Networks. J. Imaging 2017, 3, 21. [Google Scholar] [CrossRef]
- Khademi, S.; Mager, T.; Siebes, R. Deep Learning from History. In Research and Education in Urban History in the Age of Digital Libraries; UHDL, 2019; Niebling, F., Münster, S., Messemer, H., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 213–233. [Google Scholar]
- Maiwald, F. A Window to the Past through Modern Urban Environments—Developing a Photogrammetric Workflow for the Orientation Parameter Estimation of Historical Images; TU Dresden: Dresden, Germany, 2022. [Google Scholar]
- Gominski, D.; Poreba, M.; Gouet-Brunet, V.; Chen, L. Challenging Deep Image Descriptors for Retrieval in Heterogeneous Iconographic Collections. In Proceedings of the 1st Workshop on Structuring and Understanding of Multimedia heritAge Contents, Nice, France, 21 October 2019; pp. 31–38. [Google Scholar]
- Morelli, L.; Bellavia, F.; Menna, F.; Remondino, F. Photogrammetry now and then—From hand-crafted to deep-learning tie points. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 48, 163–170. [Google Scholar] [CrossRef]
- 4dReply. Closing the 4D Real World Reconstruction Loop. Available online: https://cordis.europa.eu/project/id/770784 (accessed on 8 February 2022).
- Martin-Brualla, R.; Radwan, N.; Sajjadi, M.S.M.; Barron, J.T.; Dosovitskiy, A.; Duckworth, D. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Cho, J.; Zala, A.; Bansal, M. DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 3043–3054. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 2021, 65, 99–106. [Google Scholar] [CrossRef]
- Srinivasan, P.P.; Deng, B.; Zhang, X.; Tancik, M.; Mildenhall, B.; Barron, J.T. Nerf: Neural reflectance and visibility fields for relighting and view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7495–7504. [Google Scholar]
- Li, Z.; Wang, Q.; Cole, F.; Tucker, R.; Snavely, N. DynIBaR: Neural Dynamic Image-Based Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Kaya, B.; Kumar, S.; Sarno, F.; Ferrari, V.; Gool, L. Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo. arXiv 2021, arXiv:2110.05594. [Google Scholar]
- Kniaz, V.V.; Remondino, F.; Knyaz, V.A. Generative Adversarial Networks for Single Photo 3d Reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 403–408. [Google Scholar] [CrossRef]
- Hermoza, R.; Sipiran, I. 3D Reconstruction of incomplete Archaeological Objects using a Generative Adversarial Network. In Proceedings of the Computer Graphics International 2018, Bintan Island, Indonesia, 11–14 June 2018; pp. 5–11. [Google Scholar]
- Nogales Moyano, A.; Delgado Martos, E.; Melchor, Á.; García Tejedor, Á.J. ARQGAN: An Evaluation of Generative Adversarial Networks’ Approaches for Automatic Virtual Restoration of Greek Temples. Expert Syst. Appl. 2021, 180, 115092. [Google Scholar] [CrossRef]
- Microsoft In Culture. See Ancient Olympia Brought to Life. 2021. Available online: https://www.linkedin.com/posts/microsoft_see-ancient-olympiabrought-tolife-activity-6864238527945814017-JWO0/?trk=public_profile_like_view (accessed on 10 February 2024).
- Zielke, T. Is Artificial Intelligence Ready for Standardization? In Proceedings of the Systems, Software and Services Process Improvement: 27th European Conference, EuroSPI 2020, Düsseldorf, Germany, 9–11 September 2020. [Google Scholar]
- Liu, C.; Wu, J.; Kohli, P.; Furukawa, Y. Raster-To-Vector: Revisiting Floorplan Transformation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2195–2203. [Google Scholar]
- Oliveira, S.A.; Seguin, B.; Kaplan, F. dhSegment: A Generic Deep-Learning Approach for Document Segmentation. In Proceedings of the 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), Niagara Falls, NY, USA, 5–8 August 2018; pp. 7–12. [Google Scholar]
- Ignjatić, J.; Nikolić, B.; Rikalović, A.; Ćulibrk, D. Deep Learning for Historical Cadastral Maps Digitization: Overview, Challenges and Potential. Comput. Sci. Res. Notes 2018, 2803, 42–47. [Google Scholar]
- Petitpierre, R.; Kaplan, F.; di Lenardo, I. Generic Semantic Segmentation of Historical Maps. In Proceedings of the CEUR Workshop Proceedings, Amsterdam, The Netherlands, 17–19 November 2021; pp. 228–248. [Google Scholar]
- Petitpierre, R. Neural networks for semantic segmentation of historical city maps: Cross-cultural performance and the impact of figurative diversity. arXiv 2020, arXiv:2101.12478. [Google Scholar]
- Tran, A.; Zonoozi, A.; Varadarajan, J.; Kruppa, H. PP-LinkNet: Improving Semantic Segmentation of High Resolution Satellite Imagery with Multi-stage Training. In Proceedings of the 2nd Workshop on Structuring and Understanding of Multimedia heritAge Contents, Seattle, WA, USA, 12 October 2020; pp. 57–64. [Google Scholar]
- Crommelinck, S.; Höfle, B.; Koeva, M.; Yang, M.Y.; Vosselman, G. Interactive Boundary Delineation from UAV data. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Riva del Garda, Italy, 4–7 June 2018; pp. 81–88. [Google Scholar]
- Chen, Q.; Wang, L.; Wu, Y.; Wu, G.; Guo, Z.; Waslander, S.L. Aerial imagery for roof segmentation: A largescale dataset towards automatic mapping of buildings. ISPRS J. Photogramm. Remote Sens. 2018, 147, 42–55. [Google Scholar] [CrossRef]
- Crommelinck, S.; Koeva, M.; Yang, M.Y.; Vosselman, G. Application of Deep Learning for Delineation of Visible Cadastral Boundaries from Remote Sensing Imagery. Remote Sens. 2019, 11, 2505. [Google Scholar] [CrossRef]
- Hecht, R.; Meinel, G.; Buchroithner, M.F. Automatic identification of building types based on topographic databases—A comparison of different data sources. Int. J. Cartogr. 2015, 1, 18–31. [Google Scholar] [CrossRef]
- Betsas, T.; Georgopoulos, A. 3D Edge Detection and Comparison using Four-Channel Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 48, 9–15. [Google Scholar] [CrossRef]
- Oliveira, S.A.; Lenardo, I.d.; Kaplan, F. Machine Vision Algorithms on Cadaster Plans. In Proceedings of the Conference of the International Alliance of Digital Humanities Organizations (DH 2017), Montreal, QC, Canada, 8–11 August 2017. [Google Scholar]
- Herold, H.; Hecht, R. 3D Reconstruction of Urban History Based on Old Maps; Springer: Cham, Switzerland, 2018; pp. 63–79. [Google Scholar]
- Ares Oliveira, S.; di Lenardo, I.; Tourenc, B.; Kaplan, F. A deep learning approach to Cadastral Computing. In Proceedings of the Digital Humanities Conference, Utrecht, The Netherlands, 8–12 July 2019. [Google Scholar]
- Heitzler, M.; Hurni, L. Cartographic reconstruction of building footprints from historical maps: A study on the Swiss Siegfried map. Trans. GIS 2020, 24, 442–461. [Google Scholar] [CrossRef]
- Marschner, S.; Shirley, P. Fundamentals of Computer Graphics, 4th ed.; A K Peters: Natick, MA, USA; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Schinko, C.; Krispel, U.; Gregor, R.; Schreck, T.; Ullrich, T. Generative Modellierung—Verknüpfung von Wissen und Form: Architektur, Generative Modellierung, Geometrische Datenverarbeitung, Produktdesign, Prozedurale Modellierung, Semantische Datenverarbeitung. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als Virtueller Raum der Architekturhistorischen Forschung; Kuroczyński, P., Pfarr-Harfst, M., Münster, S., Eds.; arthistoricum.net: Heidelberg, Germany, 2019; pp. 295–311. [Google Scholar]
- Snickars, P. Metamodeling—3D-(re)designing Polhem’s Laboratorium mechanicum. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als Virtueller Raum der Architekturhistorischen Forschung; Kuroczyński, P., Pfarr-Harfst, M., Münster, S., Eds.; arthistoricum.net: Heidelberg, Germany, 2019; pp. 509–528. [Google Scholar]
- Havemann, S.; Settgast, V.; Lancelle, M.; Fellner, D.W. 3D-Powerpoint—Towards a Design Tool for Digital Exhibitions of Cultural Artifacts. In Proceedings of the VAST 2007: The 8th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage, Brighton, UK, 27–29 November 2007; pp. 39–46. [Google Scholar]
- Vaienti, B.; Petitpierre, R.; di Lenardo, I.; Kaplan, F. Machine-Learning-Enhanced Procedural Modeling for 4D Historical Cities Reconstruction. Remote Sens. 2023, 15, 3352. [Google Scholar] [CrossRef]
- Pfarr-Harfst, M.; Wefers, S. Digital 3D Reconstructed Models—Structuring Visualisation Project Workflows. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; pp. 544–555. [Google Scholar]
- Farella, E.M.; Ozdemir, E.; Remondino, F. 4D Building Reconstruction with Machine Learning and Historical Maps. Appl. Sci. 2021, 11, 1445. [Google Scholar] [CrossRef]
- Kartta Labs. 2023. Available online: https://github.com/kartta-labs (accessed on 10 February 2024).
- Liu, S.; Bovolo, F.; Bruzzone, L.; Qian, D.; Tong, X. Unsupervised Change Detection in Multitemporal Remote Sensing Images. In Change Detection and Image Time Series Analysis 1; Wiley: Hoboken, NJ, USA, 2021; pp. 1–34. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Goswami, A.; Sharma, D.; Mathuku, H.; Gangadharan, S.M.P.; Yadav, C.S.; Sahu, S.K.; Pradhan, M.K.; Singh, J.; Imran, H. Change Detection in Remote Sensing Image Data Comparing Algebraic and Machine Learning Methods. Electronics 2022, 11, 431. [Google Scholar] [CrossRef]
- Nebiker, S.; Lack, N.; Deuber, M. Building Change Detection from Historical Aerial Photographs Using Dense Image Matching and Object-Based Image Analysis. Remote Sens. 2014, 6, 8310–8336. [Google Scholar] [CrossRef]
- Henze, F.; Lehmann, H.; Bruschke, B. Nutzung historischer Pläne und Bilder für die Stadtforschungen in Baalbek/Libanon. Photogramm. Fernerkund. Geoinf. 2009, 3, 221–234. [Google Scholar] [CrossRef]
- Wang, Y. Change Detection from Photographs: Image Processing; Université Paul Sabatier: Toulouse, France, 2016. [Google Scholar]
- Zhang, T.; Nefs, H.; Heynderickx, I. Change detection in pictorial and solid scenes: The role of depth of field. PLoS ONE 2017, 12, e0188432. [Google Scholar] [CrossRef]
- Noh, H.; Ju, J.; Seo, M.; Park, J.; Choi, D.G. Unsupervised Change Detection Based on Image Reconstruction Loss. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 1351–1360. [Google Scholar]
- Kharroubi, A.; Poux, F.; Ballouch, Z.; Hajji, R.; Billen, R. Three Dimensional Change Detection Using Point Clouds: A Review. Geomatics 2022, 2, 457–485. [Google Scholar] [CrossRef]
- FUTURES4EUROPE. General AI. 2021. Available online: https://www.futures4europe.eu/general-ai (accessed on 1 December 2023).
- Salahuddin, Z.; Woodruff, H.C.; Chatterjee, A.; Lambin, P. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Comput. Biol. Med. 2022, 140, 105111. [Google Scholar] [CrossRef] [PubMed]
- Wikimedia. 2020. Available online: https://en.wikipedia.org/wiki/Extended_reality (accessed on 10 February 2024).
- Russo, M. AR in the Architecture Domain: State of the Art. Appl. Sci. 2021, 11, 6800. [Google Scholar] [CrossRef]
- Schoueri, K.; Papadopoulos, C.; Schreibman, S. Survey on 3D Web Infrastructures. Final Report. 2022. Available online: https://pure3d.eu/wp-content/uploads/2022/02/3D-Infrastructure-Survey-Report_PURE3D-1.pdf (accessed on 30 March 2023).
- Fung, N.; Schoueri, K.; Scheibler, C. Pure 3D: Comparison of Features Available on Aton, Smithsonian Voyager, 3DHOP, Kompakkt and Virtual Interiors; Technical Report; Maastricht University: Maastricht, The Netherlands, 2021. [Google Scholar]
- Bajena, I.; Dworak, D.; Kuroczyński, P.; Smolarski, R.; Münster, S. DFG-3D-Viewer—Development of an infrastructure for digital 3D reconstructions. In Proceedings of the DH2022 Conference Abstracts, DH2022 Local Organizing Committee, Tokyo, Japan, 25–29 July 2022. [Google Scholar]
- European Commission. Study on quality in 3D digitisation of tangible cultural heritage: Mapping parameters, formats, standards, benchmarks, methodologies, and guidelines. In VIGIE 2020/654 Final Study Report; Universitat Politècnica de València: València, Spain, 2022. [Google Scholar]
- George Artopoulos. Interactive Historic Nicosia at the Leventis Municipal Museum. Herit. Motion. 2020. Available online: https://heritageinmotion.eu/himentry/slug-c29fe2fbb5db8fb0d0cc2e44a26d5cd9 (accessed on 30 March 2023).
- Dörner, R.; Steinicke, F. Wahrnehmungsaspekte von VR. In Virtual und Augmented Reality (VR/AR); Dörner, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 33–63. [Google Scholar]
- Kim, Y.M.; Rhiu, I. A comparative study of navigation interfaces in virtual reality environments: A mixed-method approach. Appl. Erg. 2021, 96, 103482. [Google Scholar] [CrossRef] [PubMed]
- Sagnier, C.; Loup-Escande, E.; Lourdeaux, D.; Thouvenin, I.; Vallery, G. User Acceptance of Virtual Reality: An Extended Technology Acceptance Model. Int. J. Hum. Comput. Interact. 2020, 36, 993–1007. [Google Scholar] [CrossRef]
- Tatzgern, M.; Kalkofen, D.; Schmalstieg, D. Dynamic compact visualizations for augmented reality. In Proceedings of the 2013 IEEE Virtual Reality (VR), Lake Buena Vista, FL, USA, 18–20 March 2013; pp. 3–6. [Google Scholar]
- Tatzgern, M.; Orso, V.; Kalkofen, D.; Jacucci, G.; Gamberini, L.; Schmalstieg, D. Adaptive information density for augmented reality displays. In Proceedings of the IEEE Virtual Reality (VR), Greenville, SC, USA, 19–23 March 2016; pp. 83–92. [Google Scholar]
- Büschel, W.; Reipschläger, P.; Dachselt, R. Improving 3D Visualizations. In Proceedings of the 2016 ACM Companion on Interactive Surfaces and Spaces, Niagara Falls, ON, Canada, 6–9 November 2016; pp. 63–69. [Google Scholar]
- Burmester, M.; Haasler, K.; Schippert, K.; Engel, V.; Tille, R.; Reinhardt, D.; Hurtienne, J. Lost in Space? 3D-Interaction-Patterns für einfache und positive Nutzung von 3D Interfaces. In Mensch und Computer 2018—Usability Professionals (Electronic Book); Hess, S., Fischer, H., Eds.; Gesellschaft für Informatik e.V. und German UPA e.V.: Bonn, Germany, 2018. [Google Scholar]
- Ress, S.; Cafaro, F.; Bora, D.; Prasad, D.; Soundarajan, D. Mapping History: Orienting Museum Visitors across Time and Space. Acm J. Comput. Cult. Herit. 2018, 11, 16. [Google Scholar] [CrossRef]
- Hornecker, E.; Ciolfi, L. Human-Computer Interactions in Museums. Synth. Lect. Hum. Centered Inform. 2019, 12, i-153. [Google Scholar] [CrossRef]
- Panou, C.; Ragia, L.; Dimelli, D.; Mania, K. An Architecture for Mobile Outdoors Augmented Reality for Cultural Heritage. Isprs Int. J. Geo-Inf. 2018, 7, 463. [Google Scholar] [CrossRef]
- Haahr, M. Creating location-based augmented-reality games for cultural heritage. In Proceedings of the Joint International Conference on Serious Games, Valencia, Spain, 23–24 November 2017; pp. 313–318. [Google Scholar]
- Maguid, Y. Ubisoft Creates VR Experience at Smithsonian’s Age-Old Cities Exhibition. 2020. Available online: https://news.ubisoft.com/en-us/article/6OUATm5pVU1tO6O72rTAAA/ubisoft-creates-vr-experience-at-smithsonians-ageold-cities-exhibition (accessed on 30 March 2023).
- Deterding, S.; Dixon, D.; Khaled, R.; Nacke, L. From game design elements to gamefulness: Defining ”gamification”. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, Tampere, Finland, 28–30 September 2011; pp. 9–15. [Google Scholar]
- Miller, C. Digital Storytelling: A Creator’s Guide to Interactive Entertainment, 3rd ed.; Focal Press: Waltham, MA, USA, 2014. [Google Scholar]
- László, J. The Science of Stories: An Introduction to Narrative Psychology; Routledge: London, UK, 2008. [Google Scholar]
- Kahneman, D. Thinking, Fast and Slow; Penguin: London, UK, 2011. [Google Scholar]
- Herman, D. Storytelling and the sciences of mind: Cognitive narratology, discursive psychology, and narratives in face-to-face interaction. Narrative 2007, 15, 306–334. [Google Scholar] [CrossRef]
- Constantine, L.L.; Lockwood, L.A.D. Usage-centered engineering for Web applications. IEEE Softw. 2002, 19, 42–50. [Google Scholar] [CrossRef]
- Sylaiou, S.; Dafiotis, P. Storytelling in Virtual Museums: Engaging A Multitude of Voices. In Visual Computing for Cultural Heritage; Liarokapis, F., Voulodimos, A., Doulamis, N., Doulamis, A., Eds.; Springer Series on Cultural Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 369–388. [Google Scholar]
- Rizvic, S.; Okanovic, V.; Boskovic, D. Digital Storytelling. In Visual Computing for Cultural Heritage; Liarokapis, F., Voulodimos, A., Doulamis, N., Doulamis, A., Eds.; Springer Series on Cultural Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 347–367. [Google Scholar]
- Katifori, A.; Tsitou, F.; Pichou, M.; Kourtis, V.; Papoulias, E.; Ioannidis, Y.; Roussou, M. Exploring the Potential of Visually-Rich Animated Digital Storytelling for Cultural Heritage. In Visual Computing for Cultural Heritage; Liarokapis, F., Voulodimos, A., Doulamis, N., Doulamis, A., Eds.; Springer Series on Cultural Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 325–345. [Google Scholar]
- Partarakis, N.; Zabulis, X.; Antona, M.; Stephanidis, C. Transforming Heritage Crafts to Engaging Digital Experiences. In Visual Computing for Cultural Heritage; Liarokapis, F., Voulodimos, A., Doulamis, N., Doulamis, A., Eds.; Springer Series on Cultural Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 245–262. [Google Scholar]
- Liuzzo, P.; Mambrini, F.; Franck, P. Storytelling and Digital Epigraphy-Based Narratives in Linked Open Data. In Mixed Reality and Gamification for Cultural Heritage; Ioannides, M., Magnenat-Thalmann, N., Papagiannakis, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 507–523. [Google Scholar]
- Roque, M.I. Storytelling in Cultural Heritage: Tourism and Community Engagement. In Global Perspectives on Strategic Storytelling in Destination Marketing; IGI Global: Hershey, PA, USA, 2022; pp. 22–37. [Google Scholar]
- Glaser, M.; Lengyel, D.; Toulouse, C.; Schwan, S. Designing computer-based learning contents: Influence of digital zoom on attention. EtrD-Educ. Technol. Res. Dev. 2017, 65, 1135–1151. [Google Scholar] [CrossRef]
- Tversky, B. Visuospatial reasoning. In Handbook of Reasoning; Holyoak, K., Morrison, R., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 209–249. [Google Scholar]
- Strothotte, T.; Masuch, M.; Isenberg, T. Visualizing Knowledge about Virtual Reconstructions of Ancient Architecture. In 1999 Proceedings Computer Graphics International; IEEE: Canmore, AB, Canada, 1999; pp. 36–43. [Google Scholar]
- de Boer, A.; Voorbij, J.B.; Breure, L. Towards a 3D Visualization Interface for Cultural Landscapes and Heritage Information. In Making History Interactive. 2009. Available online: https://rius.ac/index.php/rius/article/view/47 (accessed on 30 March 2023).
- Wood, J.; Isenberg, P.; Isenberg, T.; Dykes, J.; Boukhelifa, N.; Slingsby, A. Sketchy Rendering for Information Visualization. IEEE Trans. Vis. Comput. Graph. 2012, 18, 2749–2758. [Google Scholar] [CrossRef]
- Münster, S. Cultural Heritage at a Glance: Four case studies about the perception of digital architectural 3D models. In Proceedings of the 2018 3rd Digital Heritage International Congress (DigitalHERITAGE) Held Jointly with 2018 24th International Conference on Virtual Systems & Multimedia (VSMM 2018), San Francisco, CA, USA, 26–30 October 2018; pp. 1–4. [Google Scholar]
- Grau, O. Die Sehnsucht, im Bild zu Sein. Zur Kunstgeschichte der Virtuellen Realität; Humboldt-Universität zu Berlin: Berlin, Germany, 1999. [Google Scholar]
- Heeb, N.; Christen, J. Strategien zur Vermittlung von Fakt, Hypothese und Fiktion in der digitalen Architektur-Rekonstruktion. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als Virtueller Raum der Architekturhistorischen Forschung; Kuroczyński, P., Pfarr-Harfst, M., Münster, S., Eds.; arthistoricum.net: Heidelberg, Germany, 2019; pp. 226–254. [Google Scholar]
- Sayeed, R.; Howard, T. State of the Art Non-Photorealistic Rendering (NPR) Techniques. In EG UK Theory and Practice of Computer Graphics; McDerby, M., Lever, L., Eds.; The Eurographics Association: Eindhoven, The Netherlands, 2006; pp. 1–10. [Google Scholar]
- Roussou, M.; Drettakis, G. Photorealism and Non-Photorealism in Virtual Heritage Representation. In VAST2003 4th International Symposium on Virtual Reality, Archaeology, and Intelligent Cultural Heritage; Arnold, D., Chalmers, A., Niccolucci, F., Eds.; Eurographics Publications: Aire-La-Ville, Switzerland, 2003; pp. 51–60. [Google Scholar]
- Spiegelhalter, D.; Pearson, M.; Short, I. Visualizing uncertainty about the future. Science 2011, 333, 1393–1400. [Google Scholar] [CrossRef]
- Pang, A.T.; Wittenbrink, C.M.; Lodha, S.K. Approaches to uncertainty visualization. Vis. Comput. 1997, 13, 370–390. [Google Scholar] [CrossRef]
- Mütterlein, J.; Hess, T. Immersion, Presence, Interactivity: Towards a Joint Understanding of Factors Influencing Virtual Reality Acceptance and Use. In Proceedings of the 23rd Americas Conference on Information Systems (AMCIS), Boston, MA, USA, 10–12 August 2017. [Google Scholar]
- Dudek, I.; Blaise, J.-Y.; De Luca, L.; Bergerot, L.; Renaudin, N. How was this done? An attempt at formalising and memorising a digital asset’s making-of. Digit. Herit. 2015, 2, 343–346. [Google Scholar]
- Apollonio, F.I.; Gaiani, M.; Sun, Z. 3D Modeling and Data Enrichment in Digital Reconstruction of Architectural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 43–48. [Google Scholar] [CrossRef]
- Apollonio, F.I. Classification Schemes for Visualization of Uncertainty in Digital Hypothetical Reconstruction. In 3D Research Challenges in Cultural Heritage II: How to Manage Data and Knowledge Related to Interpretative Digital 3D Reconstructions of Cultural Heritage; Münster, S., Pfarr-Harfst, M., Kuroczyński, P., Ioannides, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 173–197. [Google Scholar]
- Lengyel, D.; Toulouse, C. Darstellung von unscharfem Wissen in der Rekonstruktion historischer Bauten. In Von Handaufmaß bis High Tech III. 3D in der Historischen Bauforschung; Heine, K., Rheidt, K., Henze, F., Riedel, A., Eds.; Verlag Philipp von Zabern: Darmstadt, Germany, 2011; pp. 182–186. [Google Scholar]
- Fornaro, P. 3D-Darstellungen in virtuellen Forschungsumgebungen: 3D-Visualisierung, Annotationen, Bildvergleich, Digitale Nachhaltigkeit, Kommentare, Reflection Transformation Imaging, Regionen in Bilddarstellungen, Reproduzierbarkeit digitaler Darstellungen, Virtuelle Forschungsumgebung, WebGL, Zitierfähigkeit. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als Virtueller Raum der Architekturhistorischen Forschung; Kuroczyński, P., Pfarr-Harfst, M., Münster, S., Eds.; arthistoricum.net: Heidelberg, Germany, 2019; pp. 391–409. [Google Scholar]
- Yaneva, A. Scaling up and down: Extraction trials in architectural design. Soc. Stud. Sci. 2005, 35, 867–894. [Google Scholar] [CrossRef]
- Bernardini, W.; Barnash, A.; Kumler, M.; Wong, M. Quantifying visual prominence in social landscapes. J. Archaeol. Sci. 2013, 40, 3946–3954. [Google Scholar] [CrossRef]
- Polig, M.; Papacharalambous, D.G.; Bakirtzis, N.; Hermon, S. Assessing Visual Perception in Heritage Sites with Visual Acuity: Case study of the Cathedral of St. John the Theologian in Nicosia, Cyprus. Acm J. Comput. Cult. Herit. 2021, 14, 1–18. [Google Scholar] [CrossRef]
- Ogburn, D.E. Assessing the level of visibility of cultural objects in past landscapes. J. Archaeol. Sci. 2006, 33, 405–413. [Google Scholar] [CrossRef]
- Paliou, E. Visual Perception in Past Built Environments: Theoretical and Procedural Issues in the Archaeological Application of Three-Dimensional Visibility Analysis. In Digital Geoarchaeology; Siart, C., Forbriger, M., Bubenzer, O., Eds.; Natural Science in Archaeology; Springer International Publishing: Cham, Switzerland, 2018; pp. 65–80. [Google Scholar]
- Karelin, D.A.; Karelina, M.A. Methods of reconstructions’ presentation and the peculiarities of human perception → 3D reconstruction, angle of view, architecture, methodology, perspective, plane of projection, presentation, Rauschenbach, viewpoint, visualisation. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als Virtueller Raum der Architekturhistorischen Forschung; Kuroczyński, P., Pfarr-Harfst, M., Münster, S., Eds.; arthistoricum.net: Heidelberg, Germany, 2019; pp. 186–201. [Google Scholar]
- Rauschenbach, B. Perspective Pictures and Visual Perception. Leonardo 1985, 18, 45–49. [Google Scholar] [CrossRef]
- Johnson, M.H. Phenomenological Approaches in Landscape Archaeology. Annu. Rev. Anthropol. 2012, 41, 269–284. [Google Scholar] [CrossRef]
- Mondini, D.; Ivanovici, V. (Eds.) Manipulating Light in Pre-Modern Times. Architectural, Artistic and Philosophical Aspects; Mendrisio Academy Press: Mendrisio, Switzerland, 2014. [Google Scholar]
- Happa, J.; Bashford-Rogers, T.; Wilkie, A.; Artusi, A.; Debattista, K.; Chalmers, A. Cultural heritage predictive rendering. Comput. Graph. Forum 2012, 31, 1823–1836. [Google Scholar] [CrossRef]
- Noback, A. Lichtsimulation in der digitalen Rekonstruktion historischer Architektur. Baugeschichte, Computervisualisierung, Lichtsimulation, Predictive Rendering. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als Virtueller Raum der Architekturhistorischen Forschung; Kuroczyński, P., Pfarr-Harfst, M., Münster, S., Eds.; arthistoricum.net: Heidelberg, Germany, 2019; pp. 162–185. [Google Scholar]
- Noback, A.; Wittkopf, S. Complex Material Models in Radiance. In Proceedings of the 13th Radiance Workshop, London, UK, 1–3 September 2014. [Google Scholar]
- Papadopoulos, C.; Earl, G. Formal three-dimensional computational analyses of archaeological spaces. In Spatial Analysis and Social Spaces; Paliou, E., Lieberwirth, U., Polla, S., Eds.; De Gruyter: Berlin, Germany, 2014; pp. 135–166. [Google Scholar]
- Happa, J.; Mudge, M.; Debattista, K.; Artusi, A.; Goncalves, A.; Chalmers, A. Illuminating the past: State of the art. Virtual Real. 2010, 14, 155–182. [Google Scholar] [CrossRef]
- Happa, J.; Artusi, A. Studying Illumination and Cultural Heritage. In Visual Computing for Cultural Heritage; Liarokapis, F., Voulodimos, A., Doulamis, N., Doulamis, A., Eds.; Springer Series on Cultural Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 23–42. [Google Scholar]
- Apollonio, F.I.; Fallavollita, F.; Foschi, R. The Critical Digital Model for the Study of Unbuilt Architecture. In Research and Education in Urban History in the Age of Digital Libraries; UHDL, 2019; Niebling, F., Münster, S., Messemer, H., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–24. [Google Scholar]
- Healey, C.G. Choosing effective colours for data visualization. In Proceedings of the Seventh Annual IEEE Visualization, San Francisco, CA, USA, 27 October–1 November 1996; pp. 263–270. [Google Scholar]
- Boochs, F. COSCH—Colour and Space in Cultural Heritage, A New COST Action Starts. In Proceedings of the EuroMed, Lemesos, Cyprus, 29 October–3 November 2012. [Google Scholar]
- Martos, A.; Cachero, R. Acquisition and Reproduction of Surface Appearance in Architectural Orthoimages. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 139–146. [Google Scholar] [CrossRef]
- Dhanda, A.; Reina Ortiz, M.; Weigert, A.; Paladini, A.; Min, A.; Gyi, M.; Su, S.; Fai, S.; Santana Quintero, M. Recreating Cultural Heritage Environments for Vr Using Photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 305–310. [Google Scholar] [CrossRef]
- Rey, G.D. Lernen mit Multimedia. Die Gestaltung Interaktiver Animationen; Universitätsbibliothek Trier: Trier, Germany, 2008. [Google Scholar]
- Paliou, E.; Wheatley, D.; Earl, G. Three-dimensional visibility analysis of architectural spaces: Iconography and visibility of the wall paintings of Xeste 3 (Late Bronze Age Akrotiri). J. Archaeol. Sci. 2011, 38, 375–386. [Google Scholar] [CrossRef]
- Fanini, B.; Cinque, L. Encoding immersive sessions for online, interactive VR analytics. Virtual Real. 2020, 24, 423–438. [Google Scholar] [CrossRef]
- Pintó, R.; Ametller, J. Students’ difficulties in reading images. Comparing results from four national research groups. Int. J. Sci. Educ. 2002, 24, 333–341. [Google Scholar] [CrossRef]
- Limp, W.F. Towards a strategy for evaluating heritage visualizations. In Proceedings of the 37th Computer Applications and Quantitative Methods in Archaeology Conference, Williamsburg, VA, USA, 22–26 March 2009. [Google Scholar]
- Wagemans, J. Historical and Conceptual Background: Gestalt Theory; Leuven. 2008. Available online: https://gestaltrevision.be/storage/files/1/oxford_handbook/Wagemans-Historical_and_conceptual_background_Gestalt_theory.pdf (accessed on 30 March 2023).
- Goldstein, E.B. Blackwell Handbook of Sensation and Perception; Wiley-Blackwell: Hoboken, NJ, USA, 2005. [Google Scholar]
- Gibson, J.J. The Perception of the Visual World; Houghton Mifflin: Oxford, UK, 1950. [Google Scholar]
- Ortega-Alcázar, I. Visual Research Methods. In International Encyclopedia of Housing and Home; Elsevier: San Diego, CA, USA, 2012; pp. 249–254. [Google Scholar]
- Grissom, S.; McNally, M.F.; Naps, T. Algorithm visualization in CS education: Comparing levels of student engagement. In Proceedings of the ACM Symposium on Software Visualization, San Diego, CA, USA, 11–13 June 2003. [Google Scholar]
- Nutt, P.C.; Wilson, D. Handbook of Decision Making; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar]
- Arnheim, R. Visual Thinking; Rütten & Loening: München, Germany, 1969. [Google Scholar]
- Margolis, E. The SAGE Handbook of Visual Research Methods; Sage: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Stanczak, G. Visual Research Methods; Sage: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Brill, J.M.; Kim, D.; Branch, R.M. Visual Literacy Defined—The Results of a Deiphi Study: Can IVLA (Operationally) Define Visual Literacy? J. Vis. Lit. 2007, 27, 47–60. [Google Scholar] [CrossRef]
- Avgerinou, M. Towards A visual literacy index. In Exploring the Visual Future: Art Design, Science & Technology; Griffin, R.E., Williams, V.S., Jung, L., Eds.; IVLA: Loretto, PA, USA, 2001; pp. 17–26. [Google Scholar]
- James, S. ‘Visual competence’ in archaeology: A problem hiding in plain sight. Antiquity 2015, 89, 1189–1202. [Google Scholar] [CrossRef]
- Mirzoeff, N. The Right to Look. Crit. Inq. 2011, 37, 473–496. [Google Scholar] [CrossRef]
- Pauwels, L. An integrated model for conceptualising visual competence in scientific research and communication. Vis. Stud. 2008, 23, 147–161. [Google Scholar] [CrossRef]
- Hug, T. Media competence and visual literacy—Towards considerations beyond literacies. Period. Polytech. Soc. Manag. Sci. 2012, 20, 115–125. [Google Scholar] [CrossRef]
- Hattwig, D.; Bussert, K.; Medaille, A.; Burgess, J. Visual Literacy Standards in Higher Education: New Opportunities for Libraries and Student Learning. Portal-Libr. Acad. 2013, 13, 61–89. [Google Scholar] [CrossRef]
- Peters, G. Aesthetic Primitives of Images for Visualization. In Proceedings of the 11th International Conference on Information Visualisation, Zurich, Switzerland, 2–6 July 2007; pp. 316–325. [Google Scholar]
- Nasar, J.L. Urban Design Aesthetics. The evaluative qualitites of building exteriors. Environ. Behav. 1994, 26, 377–401. [Google Scholar] [CrossRef]
- Groat, L.; Despres, C. The significance of architectural theory for environment design research. In Advances in Environment, Behavior and Design; Zube, E.H., Moore, G.T., Eds.; Plenum: New York, NY, USA, 1990; pp. 3–53. [Google Scholar]
- Styhre, A. Disciplining professional vision in architectural work. Learn. Organ. 2010, 17, 437–454. [Google Scholar] [CrossRef]
- Goodwin, C. Professional Vision. Am. Anthropol. 1994, 96, 606–633. [Google Scholar] [CrossRef]
- Simon, H.A. Invariants of human behavior. Annu. Rev. Psychol. 1990, 41, 1–19. [Google Scholar] [CrossRef]
- Tversky, B. Spatial Schemas in Depictions. In Spatial Schemas and Abstract Thought; Gattis, M., Ed.; MIT Press: Cambridge, UK, 2002; pp. 79–112. [Google Scholar]
- Muenster, D.; Muenster, S.; Dietz, R. Digital Humanities for pupils. First steps towards a research lab for children. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 1105–1111. [Google Scholar] [CrossRef]
- Smolarski, R.; Messemer, H.; Münster, S. 3D-Rekonstruktion von historischer Industriearchitektur in Jena um 1900—Ergebnisse eines Studierendenwettbewerbs. In Visual History und Geschichtsdidaktik. (Interdisziplinäre) Impulse und Anregungen für Praxis und Wissenschaft; Britsche, F., Greven, L., Eds.; Wochenschau Verlag: Frankfurt, Germany, 2023. [Google Scholar]
- Münster, D.L.; Münster, S. Designing Learning Tasks and Scenarios on Digital History for a Research Lab for Pupils; Münster, S., Pattee, A., Kröber, C., Niebling, F., Eds.; Research and Education in Urban History in the Age of Digital Libraries; Springer: Cham, Switzerland, 2023; pp. 220–232. [Google Scholar]
- Hessel, J.; Lee, L.; Mimno, D. Unsupervised Discovery of Multimodal Links in Multi-image, Multi-sentence Documents. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019. [Google Scholar]
- Bender, B. The Impact of Integration on Application Success and Customer Satisfaction in Mobile Device Platforms. Bus. Inf. Syst. Eng. 2020, 62, 515–533. [Google Scholar] [CrossRef]
- Reips, U.-D. Internet-Based Psychological Experimenting:Five Dos and Five Don’ts. Soc. Sci. Comput. Rev. 2002, 20, 241–249. [Google Scholar] [CrossRef]
- Bearman, D.; Geber, K. Transforming cultural heritage institutions through new media. Mus. Manag. Curatorship 2008, 23, 385–399. [Google Scholar] [CrossRef]
- ORCID. 2023. Available online: https://orcid.org/ (accessed on 30 March 2023).
- Bond, A.; Bond, F. GeoNames Wordnet (gnwn): Extracting wordnets from GeoNames. In Proceedings of the 10th Global Wordnet Conference, Wroclaw Poland: Global Wordnet Association, Wroclaw, Poland, 23–27 July 2019; Vossen, P., Fellbum, C., Eds.; Global Wordnet Association: Amsterdam, The Netherlands, 2019; pp. 387–393. [Google Scholar]
- Creative Commons. Creative Commons About CC Licenses. Available online: https://creativecommons.org/about/cclicenses/ (accessed on 30 March 2023).
- Münster, S.; Christen, J.; Pfarr-Harfst, M. Modellathon “Digitale 3D-Rekonstruktion” (Workshop). In Proceedings of the 5. Jahrestagung der Digital Humanities im Deutschsprachigen Raum (DHd 2018), Cologne, Germany, 26 February—2 March 2018. [Google Scholar]
- European Commission. The Digital Competence Framework 2.0. Available online: https://ec.europa.eu/jrc/en/digcomp/digital-competence-framework (accessed on 10 February 2024).
- Jiao, C.; Heitzler, M.; Hurni, L. A fast and effective deep learning approach for road extraction from historical maps by automatically generating training data with symbol reconstruction. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102980. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment Anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
- Maiwald, F.; Bruschke, J.; Schneider, D.; Wacker, M.; Niebling, F. Giving Historical Photographs a New Perspective: Introducing Camera Orientation Parameters as New Metadata in a Large-Scale 4D Application. Remote Sens. 2023, 15, 1879. [Google Scholar] [CrossRef]
- Schönberger, J.L.; Frahm, J. Structure-from-Motion Revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar] [CrossRef]
- DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperPoint: Self-Supervised Interest Point Detection and Description. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 337–349. [Google Scholar]
- Sarlin, P.-E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperGlue: Learning Feature Matching with Graph Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4938–4947. [Google Scholar]
- Tyszkiewicz, M.; Fua, P.; Trulls, E. DISK: Learning local features with policy gradient. Adv. Neural Inf. Process. Syst. 2020, 33, 14254–14265. [Google Scholar]
- Lindenberger, P.; Sarlin, P.-E.; Pollefeys, M. LightGlue: Local Feature Matching at Light Speed. arXiv 2023, arXiv:2306.13643. [Google Scholar]
- Lindenberger, P.; Sarlin, P.-E.; Larsson, V.; Pollefeys, M. Pixel-Perfect Structure-from-Motion with Featuremetric Refinement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021. [Google Scholar] [CrossRef]
- Aichholzer, O.; Aurenhammer, F. Straight skeletons for general polygonal figures in the plane. In Proceedings of the Computing and Combinatorics: Second Annual International Conference, COCOON’96, Hong Kong, China, 17–19 June 1996; pp. 117–126. [Google Scholar]
- Sugihara, K. Straight Skeleton for Automatic Generation of 3-D Building Models with General Shaped Roofs; Václav Skala-UNION Agency: Plzen, Czech Republic, 2013. [Google Scholar]
- Sugihara, K.; Khmelevsky, Y. Roof report from automatically generated 3D building models by straight skeleton computation. In Proceedings of the 2018 Annual IEEE International Systems Conference (SysCon), Vancouver, BC, Canada, 24–26 April 2018; pp. 1–8. [Google Scholar]
- OSM. 2023. Available online: https://wiki.openstreetmap.org/wiki/Key:roof:shape (accessed on 10 February 2024).
- Yu, Z.; Chen, A.; Antic, B.; Peng, S.; Bhattacharyya, A.; Niemeyer, M.; Tang, S.; Sattler, T.; Geiger, A. SDFStudio: A Unified Framework for Surface Reconstruction. 2022. Available online: https://github.com/autonomousvision/sdfstudio (accessed on 10 February 2024).
- Li, Z.; Müller, T.; Evans, A.; Taylor, R.H.; Unberath, M.; Liu, M.-Y.; Lin, C.-H. Neuralangelo: High-Fidelity Neural Surface Reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Yariv, L.; Hedman, P.; Reiser, C.; Verbin, D.; Srinivasan, P.P.; Szeliski, R.; Barron, J.T.; Mildenhall, B. BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis. arXiv 2023, arXiv:2302.14859. [Google Scholar]
- Régimbeau, G. Image source criticism in the age of the digital humanities. In Heritage and Digital Humanities: How Should Training Practices Evolve? Lit: Paris, France, 2014; pp. 179–194. [Google Scholar]
- Utescher, R.; Pattee, A.; Maiwald, F.; Bruschke, J.; Hoppe, S.; Münster, S.; Zarrieß, S. Exploring Naming Inventories for Architectural Elements for Use in Multi-modal Machine Learning Applications. In Proceedings of the Workshop on Computational Methods in the Humanities (COMHUM 2022), Lausanne, Switzerland, 9–10 June 2022. [Google Scholar]
- Baca, M.; Gill, M. Encoding multilingual knowledge systems in the digital age: The getty vocabularies. In Proceedings of the North American Symposium on Knowledge Organization, Los Angeles, CA, USA, 18–19 June 2015; pp. 41–63. [Google Scholar]
- Schmidt, S.C.; Thiery, F.; Trognitz, M. Practices of linked open data in archaeology and their realisation in Wikidata. Digital 2022, 2, 333–364. [Google Scholar] [CrossRef]
- Bruschke, J.; Kröber, C.; Utescher, R.; Niebling, F. Towards Querying Multimodal Annotations Using Graphs. In Research and Education in Urban History in the Age of Digital Libraries; UHDL, 2023; Münster, S., Pattee, A., Kröber, C., Niebling, F., Eds.; Springer: Cham, Switzerland, 2023; pp. 65–87. [Google Scholar]
- Münster, S.; Maiwald, F.; Bruschke, J.; Kröber, C.; Dietz, R.; Messemer, H.; Niebling, F. Where are we now on the Road to 4D Urban History Research and Discovery? ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 8, 109–116. [Google Scholar] [CrossRef]
- Prieto, I.; Izkara, J.L. Visualization of 3D City models on mobile devices. In Proceedings of the 17th International Conference on 3D Web Technology (Web3D ‘12), Los Angeles, CA, USA, 4–5 August 2012; pp. 101–104. [Google Scholar]
- GlTF—Runtime 3D Asset Delivery. Available online: https://www.khronos.org/gltf (accessed on 19 July 2021).
- Brettle, J.; Galligan, F. Introducing Draco: Compression for 3D graphics. Google Open Source Blog 2017, 19, 2021. [Google Scholar]
- Fan, H.; Zipf, A.; Fu, Q.; Neis, P. Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 2014, 28, 700–719. [Google Scholar] [CrossRef]
- Vrandečić, D.; Krötzsch, M. Wikidata: A free collaborative knowledgebase. Commun. ACM 2014, 57, 78–85. [Google Scholar] [CrossRef]
- Gualtieri, M. Best Practices in User Experience (UX) Design; Forrester Research: Cambridge, MA, USA, 2009. [Google Scholar]
- Stokes, R. E-Marketing: The Essential Guide to Marketing in a Digital World; Quirk Education Pty (Ltd.): Cape Town, South Africa, 2008. [Google Scholar]
- Partala, T.; Saari, T. Understanding the most influential user experiences in successful and unsuccessful technology adoptions. Comput. Hum. Behav. 2015, 53, 381–395. [Google Scholar] [CrossRef]
- Bruschke, J.; Maiwald, F.; Münster, S.; Niebling, F. Browsing and Experiencing Repositories of Spatially Oriented Historic Photographic Images. Stud. Digit. Herit. 2018, 2, 138–149. [Google Scholar] [CrossRef]
- Schindler, G.; Dellaert, F. 4D cities: Analyzing, visualizing, and interacting with historical urban photo collections. J. Multimed. 2012, 7, 124–131. [Google Scholar] [CrossRef]
- Dewitz, L.; Kröber, C.; Messemer, H.; Maiwald, F.; Münster, S.; Breitenstein, M.; Bruschke, J.; Niebling, F. Historic Photos and Visualizations—Potentials For Research. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 405–412. [Google Scholar] [CrossRef]
- Bruschke, J.; Wacker, M.; Niebling, F. Comparing Methods to Visualize Orientation of Photographs: A User Study. In Research and Education in Urban History in the Age of Digital Libraries; Niebling, F., Münster, S., Messemer, H., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 129–151. [Google Scholar]
- Fitzmaurice, G.; Matejka, J.; Mordatch, I.; Khan, A.; Kurtenbach, G. Safe 3D Navigation. In Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games, Redwood City, CA, USA, 15–17 February 2008; pp. 7–15. [Google Scholar]
- Kröber, C.; Hammel, K.; Schade, C.; Filz, N.; Dewitz, L. User Involvement for Application Development: Methods, Opportunities and Experiences from Three Different Academic Projects. In Research and Education in Urban History in the Age of Digital Libraries; Springer: Cham, Switzerland, 2021; pp. 46–83. [Google Scholar]
- Time Machine. A Proof-of-Concept of the Time Machine Community. Available online: https://www.timemachine.eu/proof-of-concept-the-time-machine-community/ (accessed on 10 February 2024).
- Google. Photorealistic 3D Tiles Overview. Available online: https://developers.google.com/maps/documentation/tile/3d-tiles-overview?hl=en (accessed on 10 February 2024).
- Lombardi, M. Sustainability of 3D Heritage Data: Life Cycle and Impact. Archeol. E Calc. 2023, 34, 339–356. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation on a Common European Data Space for Cultural Heritage; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Münster, S.; Prechtel, N. Beyond Software. Design Implications for Virtual Libraries and Platforms for Cultural Heritage from Practical Findings. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., Magnenat-Thalmann, N., Fink, E., Žarnić, R., Yen, A.-Y., Quak, E., Eds.; Springer: Cham, Switzerland, 2014; Volume LNCS 8740, pp. 131–145. [Google Scholar]
Crowdsourced Image Collection | Crowdsourced 3D Digitization | Data Retrieval Pipeline | Hackathons | School Projects |
---|---|---|---|---|
(b) Participatory virtual history knowledge bases, co-designed by citizens [80,276] | (c) 3D heritage as combined low-end guided workflow to capture photographs of endangered heritage via smartphone and server-based 3D modelling [81] | (a) Location-based data retrieval from open image and 3D repositories and information resources [81] | (d) “Modelathon” as an international student 3D reconstruction competition in 2018 and 2020 [277] | (e) A student presents her digital project to pupils [276,278] |
Footprint Extraction from Historical Maps | Spatialization of Images | 3D Parametric Models | 3D Modelling | Data Enrichment |
---|---|---|---|---|
(a) Georeference historical plans and extract building footprints | (b) Detect similar views via overlapping segments in photographs. Calculate the relative position via a feature-based orientation/positioning pipeline | (c) Create low LoD models by extrapolating footprint to building walls, generating roof shapes, and projecting photo texture to the façade | (d) Create higher LoD 3D geometries from imagery for better documentation | (e) Enriching data and connecting to other sources require an overarching ontology and the detection of and map links to text, image, and 3D data |
4D City Application | 4D Browser Application |
---|---|
Browser-based mobile application showing textured 3D models of historical buildings and points of interest. | Graphical user interface of the 4D browser application. |
Type | Source | Grid | Number Retrieved |
---|---|---|---|
Points of interest | Triposo | 1000 m radius | 1684 |
Google Place Search | 3 × 3 queries within grid 5 top results | 1092 | |
Wikipedia | Not cached | ||
Images | Flickr | 1000 m radius | 8526 |
Europeana | Within grid | 3227 | |
Mapillary | Within grid | 3961 | |
Wikimedia Commons | 10,000 m radius | 448 | |
Google Street View | 3 × 3 queries 3 images (120° FoV) per position | 2310 | |
3D Models | Sketchfab | Keyword search using a location name retrieved via Geonames | 2.736 |
Europeana | Keyword search using a location name retrieved via Geonames | 906 | |
Mainz 3D | Full dataset | 64 | |
Urban History 4D | Full dataset | 214 |
Tell Us What It Was Like: Oral History Project | Objects Tell Stories, We Listen | Culture of Remembrance Rethought: Digitization of Stolpersteine |
---|---|---|
Topic: Young people critically examine the oral history method, research topics in modern history, conduct contemporary witness interviews, and prepare them using digital tools. Objectives: Understand the construct nature of historical narratives and be able to research independently using digital resources and critically reflect on the information obtained. Realization: Project week in a youth center, 5 days, participants aged 13–18 Results: Contemporary witness interviews; POIs in the 4D City application; self-evaluation; results of qualitative surveys of teachers and learners Link: https://www.db-thueringen.de/receive/dbt_mods_00059138 (accessed on 10 February 2024) | Topic: Children select historical everyday objects such as old kitchen utensils or tools; examine their function and history; and describe, draw, and digitize them using photography and 3D scans. Objectives: Acquire a basic understanding of source-oriented historical learning and get to know and reflect on the first methods of digitization. Realization: Afternoon work group in a primary school, six sessions, participants aged 7–10 Results: Drawings, photos, 3D scans; POIs in the 4D City application; results of qualitative surveys of teachers and learners; self-evaluation Link: https://www.db-thueringen.de/receive/dbt_mods_00059136?q=Gegenst%C3%A4nde%20erz%C3%A4hlen (accessed on 10 February 2024) | Topic: Pupils research the life stories of Holocaust victims commemorated by Stolpersteine (“stumbling stones”), create short biographies, and present them on the web. Objectives: Learn about regional remembrance culture in a creative way and acquire skills in digital source research and text presentation on the web. Realization: Afternoon working group in the DH Lab, six sessions, participants aged 11 Results: Texts, images; POIs in the 4D City application; results of qualitative surveys of teachers and learners self-evaluations Link: https://www.db-thueringen.de/receive/dbt_mods_00059137?q=Stolpersteine (accessed on 10 February 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Münster, S.; Maiwald, F.; Bruschke, J.; Kröber, C.; Sun, Y.; Dworak, D.; Komorowicz, D.; Munir, I.; Beck, C.; Münster, D.L. A Digital 4D Information System on the World Scale: Research Challenges, Approaches, and Preliminary Results. Appl. Sci. 2024, 14, 1992. https://doi.org/10.3390/app14051992
Münster S, Maiwald F, Bruschke J, Kröber C, Sun Y, Dworak D, Komorowicz D, Munir I, Beck C, Münster DL. A Digital 4D Information System on the World Scale: Research Challenges, Approaches, and Preliminary Results. Applied Sciences. 2024; 14(5):1992. https://doi.org/10.3390/app14051992
Chicago/Turabian StyleMünster, Sander, Ferdinand Maiwald, Jonas Bruschke, Cindy Kröber, Ying Sun, Daniel Dworak, Dávid Komorowicz, Iqra Munir, Clemens Beck, and Dora Luise Münster. 2024. "A Digital 4D Information System on the World Scale: Research Challenges, Approaches, and Preliminary Results" Applied Sciences 14, no. 5: 1992. https://doi.org/10.3390/app14051992
APA StyleMünster, S., Maiwald, F., Bruschke, J., Kröber, C., Sun, Y., Dworak, D., Komorowicz, D., Munir, I., Beck, C., & Münster, D. L. (2024). A Digital 4D Information System on the World Scale: Research Challenges, Approaches, and Preliminary Results. Applied Sciences, 14(5), 1992. https://doi.org/10.3390/app14051992