Analysis of the Fracture Characteristics and Crack Propagation Mechanism of Fractured Sandstone under Dynamic Loading
Abstract
:Featured Application
Abstract
1. Introduction
2. Sample Processing and Testing Equipment
2.1. Processing of the Prefabricated Fractured Sandstone Specimens
2.2. SHPB Testing Device
3. SHPB Test Results of the Prefabricated Fractured Sandstone Specimens
3.1. Dynamic Stress–Strain Curve of Prefabricated Fractured Sandstone Specimens
3.2. Dynamic Mechanical Parameters of the Prefabricated Fractured Sandstone Specimens
4. Analysis of Specimen Fragmentation
4.1. Crushed Particle Size of the Specimens
4.2. The Fractal Dimension of the Broken Fragments after the Specimen Had Been Broken
4.3. Crack Propagation Morphology
4.4. Crack Propagation Mechanism
5. Discussion
6. Conclusions
- (1)
- The dynamic stress–strain curve of prefabricated fractured sandstone samples is similar to that of intact sandstone samples. There are three stages that can be roughly divided according to the stress–strain curves of the specimens: elasticity, plasticity and failure.
- (2)
- With the increase in the thickness of prefabricated cracks, there is a quadratic decrease in the dynamic compressive strength of sandstone specimens, the dynamic strain decreases in a power exponential function, and the dynamic elastic modulus decreases linearly.
- (3)
- By increasing the thickness of the prefabricated cracks, the average particle size of the sandstone specimens decreases in a quadratic function, and the degree of fragmentation becomes increasingly obvious. As the dynamic compressive strength increases, the fractal dimension of the sandstone specimens after crushing reduces linearly.
- (4)
- When the sandstone specimens with a prefabricated crack thickness of 1.5–2.5 mm are impacted, airfoil and secondary cracks are generated. When the prefabricated crack thickness is 3–3.5 mm, airfoil, coplanar secondary, and secondary oblique cracks are generated. The intact sandstone specimens develop axial cracks caused by axial tensile failure.
- (5)
- The specimen with a 45° angle between the prefabricated crack and the loading direction possess the most ideal crack propagation condition; therefore, the stress intensity on the crack surface is the largest, and the initiation of an airfoil crack at the tip of the prefabricated crack is the most suitable. The shear stress in the crack’s progressive stress drives airfoil cracking. Crack propagation can be explained by the sliding crack model theory.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, F.; Yang, G.; Xiong, X.; Zhou, K.P.; Li, C.; Li, J.L. Experimental study on the dynamic mechanical characteristics of slope rock under low-temperature conditions. Chin. J. Eng. 2023, 45, 171–181. [Google Scholar] [CrossRef]
- Li, X.F.; Li, H.B.; Liu, K.; Zhang, Q.B.; Zou, F.; Huang, L.X.; Zhao, J. Dynamic properties and fracture characteristics of rocks subject to impact loading. J. Rock Mech. Eng. 2017, 36, 2393–2405. [Google Scholar] [CrossRef]
- Ping, Q.; Wu, M.J.; Yuan, P.; Zhang, H. Experimental study on dynamic mechanical properties of high temperature sandstone under impact loads. J. Rock Mech. Eng. 2019, 38, 782–792. [Google Scholar] [CrossRef]
- Zhang, H.; Ping, Q.; Su, H.P. Study on dynamic compression SHPB test of limestone with different length diameter ratios. Coal Sci. Technol. 2018, 46, 38–43. [Google Scholar] [CrossRef]
- Ping, Q.; Gao, Q.; Wu, S.W. Study on Mechanical Properties of Ring Sandstone Specimen under Temperature and Water Coupling Dynamic Compression. Minerals 2023, 13, 119. [Google Scholar] [CrossRef]
- Ping, Q.; Wang, C.; Gao, Q.; Shen, K.F.; Wu, Y.L.; Wang, S.; Li, X.Y. Experimental Study on Dynamic Compression Mechanics of Sandstone after Coupled Alkali-Chemical-Dynamic Interaction. Adv. Civ. Eng. 2022, 2022, 1970591. [Google Scholar] [CrossRef]
- Ping, Q.; Ma, Q.Y.; Yuan, P. Prediction for stress equilibrium time in rock SHPB test. Vib. Shock. Waves 2013, 32, 55–60. [Google Scholar] [CrossRef]
- Wang, S.Q.; Wan, G.X.; LI, X.B. Acoustic emission experiment of rock failure under coupled static-dynamic load. Explos. Shock. Waves 2010, 30, 247–253. [Google Scholar] [CrossRef]
- Yang, C.; Xu, S.L.; Yi, H.S. Deformation properties of a ring under impact loading. Vib. Shock. Waves 2015, 34, 128–132+145. [Google Scholar] [CrossRef]
- Wang, X.Q.; Gao, F.Q.; Lou, J.F. Experimental research on model preparation of highly fractured rock mass based on 3D printing. Chinese J. Rock Mech. Eng. 2023, 42 (Suppl. 2), 3913–3920. [Google Scholar] [CrossRef]
- Xu, Z.S.; Bian, Z.; Liu, Y.; Feng, F.; Zhao, H.B. The Influence of Combined Fractures and Its Dip Angles on the Mechanical Properties and Failure Characteristics of Rocks. Min. Res. Dev. 2022, 42, 140–145. [Google Scholar] [CrossRef]
- Li, D.Y.; Wan, Q.R.; Zhu, Q.Q.; Hu, C.W. Experimental study on mechanical properties and failure behavior of fractured rocks under different loading methods. J. Min. Saf. Eng. 2021, 38, 1025–1035. [Google Scholar] [CrossRef]
- Han, Z.Y.; Li, D.Y.; Zhu, Q.Q.; Liu, M.; Li, X.B. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface. Chin. J. Eng. 2020, 42, 1588–1596. [Google Scholar] [CrossRef]
- Tang, J.; Yang, S.; Elsworth, D. Three-Dimensional Numerical Modeling of Grain-Scale Mechanical Behavior of Sandstone Containing an Inclined Rough Joint. Rock Mech. Rock Eng. 2020, 54, 905–919. [Google Scholar] [CrossRef]
- Wu, J.Y.; Feng, M.M.; Yu, B.Y.; Han, G.S. The length of pre-existing fissures effects on the mechanical properties of cracked red sandstone and strength design in engineering. Ultrasonics 2018, 82, 188–199. [Google Scholar] [CrossRef]
- Wang, W.H.; Li, K.; Wang, X.J.; Jiang, H.T.; Yan, Z. Experimental study of mechanical properties of rocklike specimens containing single cracks of different inclination angles under SHPB loading. Technol. Rev. 2016, 34, 246–250. [Google Scholar] [CrossRef]
- Zhu, W.C.; Huang, Z.P.; Tang, C.N.; Pang, M.Z. Numerical simulation on failure process of pre-cracked Brazilian disk specimen of rock. Rock Soil Mech. 2004, 25, 1609–1612. [Google Scholar] [CrossRef]
- Zhang, P.; Li, N.; He, R.L. Research on Localized Progressive Damage Model for Fractured Rocklike Materials. Chin. J. Rock Mech. Eng. 2006, 25, 2043–2050. [Google Scholar] [CrossRef]
- Zhang, P.; Li, N.; He, R.L.; Xu, J.G. Mechanism of Fracture Coalescence between Two Pre-existing Flaws under Dynamic Loading. Chin. J. Rock Mech. Eng. 2006, 25, 1210–1217. [Google Scholar] [CrossRef]
- Pu, C.Z.; Cao, C.; Zhao, Y.L.; Zhang, X.Y.; Yi, Y.L.; Liu, Y.K. Numerical analysis and strength experiment of rock-like materials with multi-fissures under uniaxial compression. Rock Soil Mech. 2010, 31, 3661–3666. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Li, Z.Y.; Wu, H.E.; Wang, J.; Liu, L.L. Dynamic failure characteristics of sandstone with non-penetrating cracks. Rock Soil Mech. 2019, 40 (Suppl. 1), 73–81. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.F.; Fan, P.X.; Geng, H.S.; Mo, J.Q.; Wang, D.R. Experimental study on the stress wave attenuation effect of filled cracks in rocks under confining pressure. Rock Soil Mech. 2021, 42, 2099–2108. [Google Scholar] [CrossRef]
- Wang, L.; Wang, A.C.; Chen, L.P.; Li, S.B.; Liu, H.Q. Dynamic characteristics and crack propagation characteristics of gas-bearing coal under cyclic impact. Chin. J. Rock Mech. Eng. 2023, 42, 2628–2642. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, G.Q.; Zhang, H.B.; Zhang, Y. Experimental Research on the Influence of Obliquity on the Mechanical Characteristics of a Fractured Rock Mass. J. China Univ. Min. Technol. 2009, 38, 30–33. [Google Scholar] [CrossRef]
- Tian, W.; Yu, C.; Wang, X.H.; Wu, P.F. A preliminary research on dynamic mechanical properties and energy dissipation rule of 3D printed fractured rock. Chin. J. Rock Mech. Eng. 2022, 41, 446–456. [Google Scholar] [CrossRef]
- Xie, H.P.; Ju, Y.L.; Li, Y.; Peng, R.D. Energy mechanism of rock deformation and failure process. Chin. J. Rock Mech. Eng. 2008, 09, 1729–1740. [Google Scholar] [CrossRef]
- Xie, H.P.; Peng, R.D.; Ju, Y. Energy dissipation of rock deformation and failure. Chin. J. Rock Mech. Eng. 2004, 21, 3565–3570. [Google Scholar] [CrossRef]
- Liu, H.Y.; Deng, Z.D.; Wang, X.S.; Zhang, J.H.; Zhang, L.M. Similar material test study of dynamic failure of jointed rock mass with SHPB. Rock Soil Mech. 2014, 35, 659–665. [Google Scholar] [CrossRef]
- Che, F.X.; Li, L.Y.; Liu, D.A. Fracture experiments and finite element analysis for multi-cracks body of rock-like material. Chin. J. Rock Mech. Eng. 2000, 19, 295–298. [Google Scholar] [CrossRef]
- Wong, R.H.C.; Chau, K.T.; Tang, C.A.; Lin, P. Analysis of crack coalescence in rock-like materials containing three flaws part I. Experimental approach. Int. J. Rock Mech. Min. Sci. 2001, 38, 909–924. [Google Scholar] [CrossRef]
- Martin, C.D. Seventeenth canadian geotechnical colloquium: The effect of cohesion loss and stress path on brittle rock strength. Can. Geotech. J. 1997, 34, 698–725. [Google Scholar] [CrossRef]
- Dzik, E.J.; Lajtai, E.Z. Primary fracture propagation from circular cavities loaded in compression. Int. J. Fract. 1996, 79, 49–64. [Google Scholar] [CrossRef]
- Mcclintock, F.A.; Walsh, J.B. Friction on Griffith cracks in rocks under pressure. Q. J. Mech. Appl. Math. 1961, 14, 283–292. [Google Scholar] [CrossRef]
- Bobet, A.; Einstein, H.H. Fracture coalescence in rock type materials under uniaxial and biaxial compression. Int. J. Rock Mech. Min. Sci. 1998, 35, 863–888. [Google Scholar] [CrossRef]
- Afolagboye, L.O.; He, J.; Wang, S. Experimental study on cracking behavior of moulded gypsum containing two nonparallel over lapping flaws under uniaxial compression. Acta Mech. Sin. 2017, 33, 394–405. [Google Scholar] [CrossRef]
- Lajtai, E.Z. A theoretical and experimental evaluation of the Griffith theory of brittle fracture. Tectonophysics 1971, 11, 129–156. [Google Scholar] [CrossRef]
- Niya, R.S.; Selvadurai, A. Correlation of joint roughness coefficient and permeability of a fracture. Int. J. Rock Mech. Min. Sci. 2019, 113, 150–162. [Google Scholar] [CrossRef]
- Dustin, C.; Grant, B.; Zuleima, T.K. Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures. Int. J. Rock Mech. Min. Sci. 2010, 47, 1365–1609. [Google Scholar] [CrossRef]
- Liu, T.; Lin, B.; Yang, W. Mechanical behavior and failure mechanism of pre-cracked specimen under uniaxial compression. Tectonophysics 2017, 712–713, 330–343. [Google Scholar] [CrossRef]
- T/CSRME001-2019; Test Procedure for Dynamic Characteristics of Rocks. Chinese Society of Rock Mechanics and Engineering: Beijing, China, 2019.
- Li, X.B.; Tao, Z.; Li, D.Y. Dynamic strength and fracturing behavior of single-flawed prismatic marble specimens under impact loading with a split-Hopkinson pressure bar. Rock Mech. Rock Eng. 2017, 50, 29–44. [Google Scholar] [CrossRef]
- Zou, C.J.; Wong, L.N.Y.; Loo, J.J.; Gan, B.S. Different mechanical and cracking behaviors of single-flawed brittle gypsum specimens under dynamic and quasi-static loadings. Eng. Geol. 2016, 201, 71–84. [Google Scholar] [CrossRef]
- Irwin, G.R.; Wells, A.A. Continuum-mechanics view of crack propagation. Metall. Rev. 1965, 10, 223–270. [Google Scholar] [CrossRef]
- Schmidt, R.A.; Rossmanith, H.P. Basics of Rock Fracture Mechanics. In Rock Fracture Mechanics; International Centre for Mechanical Sciences; Rossmanith, H.P., Schmidt, R.A., Eds.; Springer: Vienna, Austria, 1983; Volume 275. [Google Scholar] [CrossRef]
- Zeng, J.J.; Zhang, Z.J.; Pu, C.Z. Fracture Experiment and Numerical Simulation of Fractured Rock-Like Samples Influenced by Opening. Chin. J. Undergr. Space Eng. 2022, 18, 1863–1872. [Google Scholar]
- Zhuang, X.; Chun, J.; Zhu, H. A comparative study on unfilled and filled crack propagation for rock-like brittle material. Theor. Appl. Fract. Mech. 2014, 72, 110–120. [Google Scholar] [CrossRef]
Crack Thickness /mm | Test Piece Number | Physical Parameters | Dynamic Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|
Volume /×10−3 cm−3 | Quality /g | Density /cm−3/g | Effective Volume /cm−3 | Dynamic Compressive Strength/MPa | Dynamic Strain /×10−3 | Dynamic Modulus of Elasticity/GPa | Average Strain Rate | ||
0 | PJ23-16 | 98.20 | 273.67 | 2.8 | 98.20 | 103.23 | 5.78 | 46.05 | 89.8 |
PJ23-17 | 98.65 | 275.77 | 2.8 | 98.65 | 97.72 | 5.47 | 47.50 | 84.5 | |
PJ23-18 | 98.36 | 273.62 | 2.8 | 98.36 | 96.56 | 5.27 | 50.28 | 89.3 | |
1.5 | PJ23-01 | 98.99 | 272.56 | 2.8 | 97.69 | 84.57 | 4.25 | 38.33 | 86.7 |
PJ23-02 | 98.70 | 270.59 | 2.7 | 97.39 | 91.20 | 3.81 | 30.62 | 91.7 | |
PJ23-03 | 99.23 | 268.72 | 2.7 | 97.92 | 87.72 | 4.52 | 36.08 | 86.6 | |
2.0 | PJ23-04 | 98.31 | 270.30 | 2.7 | 96.35 | 73.46 | 3.21 | 30.50 | 88.7 |
PJ23-05 | 98.59 | 266.92 | 2.7 | 96.63 | 78.48 | 3.76 | 30.96 | 85.9 | |
PJ23-06 | 98.55 | 261.90 | 2.7 | 96.59 | 77.24 | 3.54 | 34.33 | 92.9 | |
2.5 | PJ23-07 | 98.78 | 269.84 | 2.7 | 96.33 | 73.96 | 3.28 | 23.51 | 85.1 |
PJ23-08 | 98.88 | 262.79 | 2.7 | 96.43 | 71.58 | 3.48 | 25.43 | 84.7 | |
PJ23-09 | 98.69 | 257.02 | 2.6 | 96.24 | 78.14 | 3.58 | 20.19 | 87.3 | |
3.0 | PJ23-10 | 98.26 | 258.98 | 2.6 | 95.65 | 64.45 | 3.30 | 18.12 | 91.2 |
PJ23-11 | 98.86 | 265.23 | 2.7 | 96.24 | 67.53 | 3.27 | 19.95 | 90.1 | |
PJ23-12 | 98.07 | 264.60 | 2.7 | 95.46 | 60.86 | 3.16 | 16.55 | 88.0 | |
3.5 | PJ23-13 | 98.11 | 264.47 | 2.7 | 95.06 | 58.68 | 2.81 | 13.93 | 93.7 |
PJ23-14 | 98.14 | 259.78 | 2.6 | 95.09 | 50.49 | 2.18 | 12.35 | 86.0 | |
PJ23-15 | 98.54 | 264.44 | 2.7 | 95.50 | 61.46 | 2.97 | 11.56 | 93.5 |
Crack Thickness/mm | Size of Screen Mesh/mm | Gross Mass /g | Average Particle Size of Fragments /mm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.15 | 0.30 | 0.60 | 1.18 | 2.36 | 4.75 | 9.50 | 13.20 | |||
0 | 0.25 | 0.09 | 0.22 | 0.39 | 0.78 | 3.04 | 7.40 | 22.23 | 237.69 | 272.09 | 12.47 |
1.5 | 0.11 | 0.34 | 1.25 | 1.80 | 1.94 | 8.30 | 13.45 | 23.31 | 218.48 | 268.98 | 11.87 |
2.0 | 0.19 | 0.20 | 1.30 | 2.05 | 2.98 | 9.89 | 13.04 | 20.83 | 209.45 | 259.93 | 11.75 |
2.5 | 0.25 | 0.37 | 0.88 | 1.62 | 2.75 | 7.01 | 25.86 | 17.40 | 204.22 | 260.36 | 11.54 |
3.0 | 0.44 | 0.26 | 0.91 | 1.20 | 2.00 | 16.21 | 22.81 | 18.13 | 201.14 | 263.10 | 11.32 |
3.5 | 0.54 | 0.30 | 1.22 | 1.78 | 2.78 | 16.35 | 26.04 | 27.88 | 194.99 | 271.88 | 11.06 |
Crack Thickness/mm | Linear Function Slope | Correlation Coefficient R2 | Fractal Dimension |
---|---|---|---|
0 | 1.2323 | 0.848 | 1.7677 |
1.5 | 1.1744 | 0.956 | 1.8256 |
2.0 | 1.1414 | 0.944 | 1.8586 |
2.5 | 1.1039 | 0.923 | 1.8961 |
3.0 | 1.0895 | 0.894 | 1.9105 |
3.5 | 1.0704 | 0.918 | 1.9296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ping, Q.; Li, X. Analysis of the Fracture Characteristics and Crack Propagation Mechanism of Fractured Sandstone under Dynamic Loading. Appl. Sci. 2024, 14, 2042. https://doi.org/10.3390/app14052042
Ping Q, Li X. Analysis of the Fracture Characteristics and Crack Propagation Mechanism of Fractured Sandstone under Dynamic Loading. Applied Sciences. 2024; 14(5):2042. https://doi.org/10.3390/app14052042
Chicago/Turabian StylePing, Qi, and Xiangyang Li. 2024. "Analysis of the Fracture Characteristics and Crack Propagation Mechanism of Fractured Sandstone under Dynamic Loading" Applied Sciences 14, no. 5: 2042. https://doi.org/10.3390/app14052042
APA StylePing, Q., & Li, X. (2024). Analysis of the Fracture Characteristics and Crack Propagation Mechanism of Fractured Sandstone under Dynamic Loading. Applied Sciences, 14(5), 2042. https://doi.org/10.3390/app14052042