Artificial Intelligence and Forensic Genetics: Current Applications and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Quality Assessment and Data Extraction
2.3. Characteristics of Eligible Studies
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, C.; McGuire, B.; Huang, T.; Yang, G. The History of Artificial Intelligence; University of Washington: Washington, DC, USA, 2006. [Google Scholar]
- Mccarthy, J. From here to human-level AI. Art. Int. 2007, 171, 1174–1182. [Google Scholar] [CrossRef]
- Oliva, A.; Grassi, S.; Vetrugno, G.; Rossi, R.; Della Morte, G.; Pinchi, V.; Caputo, M. Management of Medico-Legal Risks in Digital Health Era: A Scoping Review. Front. Med. 2022, 8, 821756. [Google Scholar] [CrossRef] [PubMed]
- Galante, N.; Cotroneo, R.; Furci, D.; Lodetti, G.; Casali, M.B. Applications of Artificial Intelligence in Forensic Sciences: Current Potential Benefits, Limitations and Perspectives. Int. J. Legal Med. 2022, 137, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M. Recent Advances in Forensic Biology and Forensic DNA Typing: INTERPOL Review 2019–2022. Forensic Sci. Int. 2023, 6, 100311. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Sessa, F.; Cocimano, G.; Zuccarello, P.; Roccuzzo, S.; Salerno, M. Advances in Technologies in Crime Scene Investigation. Diagnostics 2023, 13, 3169. [Google Scholar] [CrossRef]
- Aldoseri, A.; Al-Khalifa, K.N.; Hamouda, A.M. Re-Thinking Data Strategy and Integration for Artificial Intel-ligence: Concepts, Opportunities, and Challenges. Appl. Sci. 2023, 13, 7082. [Google Scholar] [CrossRef]
- Collins, C.; Dennehy, D.; Conboy, K.; Mikalef, P. Artificial Intelligence in Information Systems Research: A Systematic Literature Review and Research Agenda. Int. J. Inf. Manag. 2021, 60, 102383. [Google Scholar] [CrossRef]
- der Mauer, M.A.; Well, E.J.-V.; Herrmann, J.; Groth, M.; Morlock, M.M.; Maas, R.; Säring, D. Automated Age Estimation of Young Individuals Based on 3D Knee MRI Using Deep Learning. Int. J. Leg. Med. 2020, 135, 649–663. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, Y.; Vieira, D.N.; Guo, Y.; Wang, Y.; Deng, K.; Chen, Y.; Zhang, J.; Qin, Z.; Chen, F.; et al. A Potential Method for Sex Estimation of Human Skeletons Using Deep Learning and Three-Dimensional Sur-face Scanning. Int. J. Leg. Med. 2021, 135, 2409–2421. [Google Scholar] [CrossRef]
- Bewes, J.; Low, A.; Morphett, A.; Pate, F.D.; Henneberg, M. Artificial Intelligence for Sex Determination of Skeletal Remains: Application of a Deep Learning Artificial Neural Network to Human Skulls. J. Forensic Leg. Med. 2019, 62, 40–43. [Google Scholar] [CrossRef]
- Mohtarami, S.A.; Hedjazi, A.; Manouchehri, R.H. Determine the Age Range Based on Machine-Learning Methods from Skeletal Angles of the Face (Glabella and Maxilla Angle and Length and Width of Piriformis) in a CT Scan. Int. J. Med. Toxicol. Forensic Med. 2022, 12, 38605. [Google Scholar] [CrossRef]
- Kim, Y.H.; Ha, E.-G.; Jeon, K.J.; Lee, C.; Han, S.-S. A Fully Automated Method of Human Identification Based on Dental Panoramic Radiographs Using a Con-volutional Neural Network. Dentomaxillofacial Radiol. 2021, 51, 20210383. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Porto, L.; Heng, D.; Murray, J.; Lygate, A.; Franco, R.; Bueno, J.; Sobania, M.; Costa, M.M.; Paranhos, L.R.; et al. Diagnostic Performance of Convolutional Neural Networks for Dental Sexual Dimorphism. Sci. Rep. 2022, 12, 17279. [Google Scholar] [CrossRef]
- Gómez, Ó.; Mesejo, P.; Ibáñez, Ó.; Valsecchi, A.; Bermejo, E.; Cerezo, A.; Pérez, J.; Alemán, I.; Kahana, T.; Damas, S.; et al. Evaluating Artificial Intelligence for Comparative Radiography. Int. J. Leg. Med. 2023, 138, 307–327. [Google Scholar] [CrossRef] [PubMed]
- Kondou, H.; Morohashi, R.; Ichioka, H.; Bandou, R.; Matsunari, R.; Kawamoto, M.; Idota, N.; Ting, D.; Kimura, S.; Ikegaya, H. Deep Neural Networks-Based Age Estimation of Cadavers Using CT Imaging of Vertebrae. Int. J. Environ. Res. Public Health 2023, 20, 4806. [Google Scholar] [CrossRef] [PubMed]
- Baydogan, M.P.; Baybars, S.C.; Tuncer, S.A. Age-Net: An Advanced Hybrid Deep Learning Model for Age Estimation Using Orthopantomograph Images. Trait. Signal 2023, 40, 1553–1563. [Google Scholar] [CrossRef]
- Bu, W.-Q.; Zhang, D.; Du, S.-Y.; Han, M.-Q.; Wu, Z.-X.; Tang, Y.; Chen, T.; Guo, Y.-C.; Meng, H.-T. Automatic Sex Estimation Using Deep Convolutional Neural Network Based on Orthopantomogram Images. Forensic Sci. Int. 2023, 348, 111704. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jain, A. Dental Biometrics: Alignment and Matching of Dental Radiographs. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1319–1326. [Google Scholar] [CrossRef]
- Campomanes-Alvarez, C.; Ibáñez, O.; Cordón, O.; Wilkinson, C. Hierarchical Information Fusion for Decision Making in Craniofacial Superimposition. Inf. Fusion 2018, 39, 25–40. [Google Scholar] [CrossRef]
- Heinrich, A.; Güttler, F.; Wendt, S.; Schenkl, S.; Hubig, M.; Wagner, R.; Mall, G.; Teichgräber, U. Forensic Odontology: Automatic Identification of Persons Comparing Antemortem and Postmortem Panoramic Radiographs Using Computer Vision. RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren 2018, 190, 1152–1158. [Google Scholar] [CrossRef]
- Thurzo, A.; Jančovičová, V.; Hain, M.; Thurzo, M.; Novák, B.; Kosnáčová, H.; Lehotská, V.; Varga, I.; Kováč, P.; Moravanský, N. Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact. Molecules 2022, 27, 4035. [Google Scholar] [CrossRef] [PubMed]
- Kira, K.; Chiba, F.; Makino, Y.; Torimitsu, S.; Yamaguchi, R.; Tsuneya, S.; Motomura, A.; Yoshida, M.; Saitoh, N.; Inokuchi, G.; et al. Stature Estimation by Semi-Automatic Measurements of 3D CT Images of the Femur. Int. J. Leg. Med. 2022, 137, 359–377. [Google Scholar] [CrossRef]
- Venema, J.; Peula, D.; Irurita, J.; Mesejo, P. Employing Deep Learning for Sex Estimation of Adult Individuals Using 2D Images of the Humerus. Neural Comput. Appl. 2022, 35, 5987–5998. [Google Scholar] [CrossRef]
- Murray, J.; Heng, D.; Lygate, A.; Porto, L.; Abade, A.; Manica, S.; Franco, A. Applying Artificial Intelligence to Determination of Legal Age of Majority from Radiographic Data. Morphologie 2024, 108, 100723. [Google Scholar] [CrossRef] [PubMed]
- Barrington, S.; Farid, H. A comparative Analysis of Human and AI Performance in Forensic Estimation of Physical Attributes. Sci. Rep. 2023, 13, 4784. [Google Scholar] [CrossRef] [PubMed]
- Thong, Z.; Tan, J.Y.Y.; Loo, E.S.; Phua, Y.W.; Chan, X.L.S.; Syn, C.K.-C. Artificial Neural Network, Predictor Variables and Sensitivity Threshold for DNA Methylation-Based Age Prediction Using Blood Samples. Sci. Rep. 2021, 11, 1744. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Xue, Y.; Knoops, R.; Yu, D.; Balmashnova, E.; Kang, X.; Falgari, P.; Zheng, D.; Liu, P.; Chen, H.; et al. Automated Diatom Searching in the Digital Scanning Electron Microscopy Images of Drowning Cases Using the Deep Neural Networks. Int. J. Leg. Med. 2020, 135, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, Y.; Vieira, D.N.; Cao, Y.; Deng, K.; Cheng, Q.; Zhu, Y.; Zhang, J.; Qin, Z.; Ma, K.; et al. An Efficient Method for Building a Database of Diatom Populations for Drowning Site Inference Using a Deep Learning Algorithm. Int. J. Leg. Med. 2021, 135, 817–827. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Huang, J.; Deng, K.; Zhang, J.; Qin, Z.; Wang, Z.; Zhang, X.; Tuo, Y.; Chen, L.; et al. Digital Whole-Slide Image Analysis for Automated Diatom Test in Forensic Cases of Drowning Using a Convolutional Neural Network Algorithm. Forensic Sci. Int. 2019, 302, 109922. [Google Scholar] [CrossRef]
- Deng, J.; Guo, W.; Zhao, Y.; Liu, J.; Lai, R.; Gu, G.; Zhang, Y.; Li, Q.; Liu, C.; Zhao, J. Identification of Diatom Taxonomy by a Combination of Region-Based Full Convolutional Network, Online Hard Example Mining, and Shape Priors of Diatoms. Int. J. Leg. Med. 2021, 135, 2519–2530. [Google Scholar] [CrossRef]
- Martos, R.; Guerra, R.; Navarro, F.; Peruch, M.; Neuwirth, K.; Valsecchi, A.; Jankauskas, R.; Ibáñez, O. Computer-Aided Craniofacial Superimposition Validation Study: The Identification of the Leaders and Participants of the Polish-Lithuanian January Uprising (1863–1864). Int. J. Leg. Med. 2022, 138, 107–121. [Google Scholar] [CrossRef]
- Zhang, J.; Vieira, D.N.; Cheng, Q.; Zhu, Y.; Deng, K.; Zhang, J.; Qin, Z.; Sun, Q.; Zhang, T.; Ma, K.; et al. DiatomNet v1.0: A Novel Approach for Automatic Diatom Testing for Drowning Diagnosis in Forensically Biomedical Application. Comput. Methods Programs Biomed. 2023, 232, 107434. [Google Scholar] [CrossRef]
- Li, D. Ballistics Projectile Image Analysis for Firearm Identification. IEEE Trans. Image Process. 2006, 15, 2857–2865. [Google Scholar] [CrossRef]
- Cheng, J.; Schmidt, C.; Wilson, A.; Wang, Z.; Hao, W.; Pantanowitz, J.; Morris, C.; Tashjian, R.; Pantanowitz, L. Artificial Intelligence for Human Gunshot Wound Classification. J. Pathol. Inform. 2024, 15, 100361. [Google Scholar] [CrossRef] [PubMed]
- Haut, R.C.; Wei, F. Biomechanical Studies on Patterns of Cranial Bone Fracture Using the Immature Porcine Model. J. Biomech. Eng. 2017, 139, 021001. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Y.-J.; Liu, M.-F.; Li, N.; Dang, L.-H.; An, G.-S.; Lu, X.-J.; Wang, L.-L.; Du, Q.-X.; Cao, J.; et al. Multi-Omics Integration Strategy in the Post-Mortem Interval of Forensic Science. Talanta 2024, 268, 125249. [Google Scholar] [CrossRef] [PubMed]
- Tozzo, P.; Angiola, F.; Gabbin, A.; Politi, C.; Caenazzo, L. The difficult role of Artificial Intelligence in Medical Liability: To Err is Not Only Human. Clin. Terapeutica 2021, 172, 527–528. [Google Scholar] [CrossRef]
- Cestonaro, C.; Delicati, A.; Marcante, B.; Caenazzo, L.; Tozzo, P. Defining Medical Liability when Artificial Intelligence Is Applied on Diagnostic Algorithms: A Systematic Review. Front. Med. 2023, 10, 1305756. [Google Scholar] [CrossRef]
- Barash, M.; McNevin, D.; Fedorenko, V.; Giverts, P. Machine Learning Applications in Forensic DNA Profiling: A Critical Review. Forensic Sci. Int. Genet. 2024, 69, 102994. [Google Scholar] [CrossRef] [PubMed]
- Schlecht, J.; Kaplan, M.E.; Barnard, K.; Karafet, T.; Hammer, M.F.; Merchant, N.C. Machine-Learning Approaches for Classifying Haplogroup from Y Chromosome STR Data. PLoS Comput. Biol. 2008, 4, e1000093. [Google Scholar] [CrossRef]
- Libbrecht, M.W.; Noble, W.S. Machine Learning Applications in Genetics and Genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef]
- Haddrill, P.R. Developments in Forensic DNA Analysis. Emerg. Top. Life Sci. 2021, 5, 381–393. [Google Scholar] [CrossRef]
- Paudel, R.; Ligmann-Zielinska, A. A Largely Unsupervised Domain-Independent Qualitative Data Extraction Approach for Empirical Agent-Based Model Development. Algorithms 2023, 16, 338. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews Systematic Reviews and Meta-Analyses. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Pereira, L.; Alshamali, F.; Andreassen, R.; Ballard, R.; Chantratita, W.; Cho, N.S.; Coudray, C.; Dugoujon, J.-M.; Espinoza, M.; González-Andrade, F.; et al. PopAffiliator: Online Calculator for Individual Affiliation to a Major Population Group Based on 17 Autosomal Short Tandem Repeat Genotype Profile. Int. J. Leg. Med. 2010, 125, 629–636. [Google Scholar] [CrossRef]
- Mukunthan, B.; Nagaveni, N. Identification of unique repeated patterns, location of mutation in DNA Finger Printing Using Artificial Intelligence Technique. Int. J. Bioinform. Res. Appl. 2014, 10, 157–176. [Google Scholar] [CrossRef]
- Taylor, D.; Powers, D. Teaching Artificial Intelligence to Read Electropherograms. Forensic Sci. Int. Genet. 2016, 25, 10–18. [Google Scholar] [CrossRef]
- Aliferi, A.; Ballard, D.; Gallidabino, M.D.; Thurtle, H.; Barron, L.; Court, D.S. DNA Methylation-Based Age Prediction Using Massively Parallel Sequencing Data and Multiple Machine Learning Models. Forensic Sci. Int. Genet. 2018, 37, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Adelman, J.D.; Zhao, A.; Eberst, D.S.; Marciano, M.A. Automated Detection and Removal of Capillary Electrophoresis Artifacts Due to Spectral Overlap. Electrophoresis 2019, 40, 1753–1761. [Google Scholar] [CrossRef]
- Siino, V.; Sears, C. Artificially Intelligent Scoring and Classification Engine for Forensic Identification. Forensic Sci. Int. Genet. 2019, 44, 102162. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tao, R.; Zhou, W.; Li, Y.; Meng, M.; Zhang, Y.; Yu, L.; Chen, L.; Bian, Y.; Li, C. Validation Studies of the ParaDNA® Intelligence System with Artificial Evidence Items. Forensic Sci. Res. 2019, 6, 84–91. [Google Scholar] [CrossRef]
- Volgin, L.; Taylor, D.; Bright, J.-A.; Lin, M.-H. Validation of a Neural Network Approach for STR Typing to Replace Human Reading. Forensic Sci. Int. Genet. 2021, 55, 102591. [Google Scholar] [CrossRef]
- Veldhuis, M.S.; Ariëns, S.; Ypma, R.J.; Abeel, T.; Benschop, C.C. Explainable Artificial Intelligence in Forensics: Realistic Explanations for Number of Contributor Predictions of DNA Profiles. Forensic Sci. Int. Genet. 2021, 56, 102632. [Google Scholar] [CrossRef]
- Chen, M.; Cui, W.; Bai, X.; Fang, Y.; Yao, H.; Zhang, X.; Lei, F.; Zhu, B. Comprehensive Evaluations of Individual Discrimination, Kinship Analysis, Genetic Relationship Exploration and Biogeographic Origin Prediction in Chinese Dongxiang Group by a 60-plex DIP panel. Hereditas 2023, 160, 14. [Google Scholar] [CrossRef]
- Kloska, A.; Giełczyk, A.; Grzybowski, T.; Płoski, R.; Kloska, S.M.; Marciniak, T.; Pałczyński, K.; Rogalla-Ładniak, U.; Malyarchuk, B.A.; Derenko, M.V.; et al. A Machine-Learning-Based Approach to Prediction of Biogeographic Ancestry within Europe. Int. J. Mol. Sci. 2023, 24, 15095. [Google Scholar] [CrossRef]
- Fabbri, M.; Alfieri, L.; Mazdai, L.; Frisoni, P.; Gaudio, R.M.; Neri, M. Application of Forensic DNA Phenotyping for Prediction of Eye, Hair and Skin Colour in Highly Decomposed Bodies. Healthcare 2023, 11, 647. [Google Scholar] [CrossRef] [PubMed]
- Hefetz, I. Mapping AI-ethics’ Dilemmas in Forensic Case Work: To trust AI or Not? Forensic Sci. Int. 2023, 350, 111807. [Google Scholar] [CrossRef]
- Raposo, V.L. The Use of Facial Recognition Technology by Law Enforcement in Europe: A Non-Orwellian Draft Proposal. Eur. J. Crim. Policy Res. 2023, 29, 515–533. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, E. Fairness and Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, and Mitigation Strategies. arXiv 2023, arXiv:2304.07683. [Google Scholar]
- Padma, K.R.; Don, K.R. Artificial Neural Network Applications in Analysis of Forensic Science. In Cyber Security and Digital Forensics; Wiley Online Library: New York, NY, USA, 2021. [Google Scholar]
- Seki, T.; Hsiao, Y.-Y.; Ishizawa, F.; Sugano, Y.; Takahashi, Y. Establishment of A Random Forest Regression Model to Estimate the Age of Bloodstains Based on Temporal Colorimetric Analysis. Leg. Med. 2023, 102343. [Google Scholar] [CrossRef] [PubMed]
- Nikita, E.; Nikitas, P. On the Use of Machine Learning Algorithms in Forensic Anthropology. Leg. Med. 2020, 47, 101771. [Google Scholar] [CrossRef]
- Rostamzadeh, S.; Abouhossein, A.; Saremi, M.; Taheri, F.; Ebrahimian, M.; Vosoughi, S. A Comparative Investigation of Machine Learning Algorithms for Predicting Safety Signs Comprehension Based on Socio-Demographic Factors and Cognitive Sign Features. Sci. Rep. 2023, 13, 10843. [Google Scholar] [CrossRef]
- Albahra, S.; Gorbett, T.; Robertson, S.; D’Aleo, G.; Kumar, S.V.S.; Ockunzzi, S.; Lallo, D.; Hu, B.; Rashidi, H.H. Artificial Intelligence and Machine Learning Overview in Pathology & Laboratory Medicine: A general review of data preprocessing and basic supervised concepts. Semin. Diagn. Pathol. 2023, 40, 71–87. [Google Scholar] [CrossRef]
- Li, Z.; Gao, E.; Zhou, J.; Han, W.; Xu, X.; Gao, X. Applications of Deep Learning in Understanding Gene Regulation. Cell Rep. Methods 2023, 3, 100384. [Google Scholar] [CrossRef]
- Rashidi, H.H.; Albahra, S.; Robertson, S.; Tran, N.K.; Hu, B. Common Statistical Concepts in the Supervised Machine Learning arena. Front. Oncol. 2023, 13, 1130229. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Harbison, S. A Review of Bioinformatic Methods for Forensic DNA analyses. Forensic Sci. Int. Genet. 2018, 33, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Benschop, C.C.; Hoogenboom, J.; Hovers, P.; Slagter, M.; Kruise, D.; Parag, R.; Steensma, K.; Slooten, K.; Nagel, J.H.; Dieltjes, P.; et al. DNAxs/DNAStatistX: Development and Validation of a Software Suite for the Data Management and Probabilistic Interpretation of DNA Profiles. Forensic Sci. Int. Genet. 2019, 42, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Bright, J.-A.; Taylor, D.; McGovern, C.; Cooper, S.; Russell, L.; Abarno, D.; Buckleton, J. Developmental Validation of STRmix™, Expert Software for the Interpretation of Forensic DNA Profiles. Forensic Sci. Int. Genet. 2016, 23, 226–239. [Google Scholar] [CrossRef]
- Manabe, S.; Fukagawa, T.; Fujii, K.; Mizuno, N.; Sekiguchi, K.; Akane, A.; Tamaki, K. Development and validation of Kongoh ver. 3.0.1: Open-Source Software for DNA Mixture Interpretation in the GlobalFiler System Based on a Quantitative Continuous Model. Leg. Med. 2021, 54, 101972. [Google Scholar] [CrossRef]
- Moretti, T.R.; Just, R.S.; Kehl, S.C.; Willis, L.E.; Buckleton, J.S.; Bright, J.-A.; Taylor, D.A.; Onorato, A.J. Internal Validation of STRmix™ for the Interpretation of Single Source and Mixed DNA Profiles. Forensic Sci. Int. Genet. 2017, 29, 126–144. [Google Scholar] [CrossRef]
- Perlin, M.W.; Legler, M.M.; Spencer, C.E.; Smith, J.L.; Allan, W.P.; Belrose, J.L.; Duceman, B.W. Validating TrueAllele® DNA Mixture Interpretation. J. Forensic Sci. 2011, 56, 1430–1447. [Google Scholar] [CrossRef]
- Balding, D.J.; Buckleton, J. Interpreting Low Template DNA Profiles. Forensic Sci. Int. Genet. 2009, 4, 1–10. [Google Scholar] [CrossRef]
- Duke, K.R.; Myers, S.P. Systematic Evaluation of STRmix™ Performance on Degraded DNA Profile Data. Forensic Sci. Int. Genet. 2019, 44, 102174. [Google Scholar] [CrossRef] [PubMed]
- Bleka, Ø.; Storvik, G.; Gill, P. EuroForMix: An Open Source Software Based on a Continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci. Int. Genet. 2016, 21, 35–44. [Google Scholar] [CrossRef]
- Holland, M.M.; Parson, W. GeneMarker® HID: A Reliable Software Tool for the Analysis of Forensic STR Data. J. Forensic Sci. 2010, 56, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Carratto, T.M.T.; Moraes, V.M.S.; Recalde, T.S.F.; de Oliveira, M.L.G.; Mendes-Junior, C.T. Applications of massively parallel sequencing in forensic genetics. Genet. Mol. Biol. 2022, 45, e20220077. [Google Scholar] [CrossRef]
- Gupta, N.; Verma, V.K. Next-Generation Sequencing and Its Application: Empowering in Public Health Beyond Reality. Microb. Technol. Welfare Soc. 2019, 17, 313–341. [Google Scholar] [CrossRef]
- Dash, H.R.; Kaitholia, K.; Kumawat, R.K.; Singh, A.K.; Shrivastava, P.; Chaubey, G.; Das, S. Sequence variations, flanking region mutations, and allele frequency at 31 autosomal STRs in the central Indian population by next generation sequencing (NGS). Sci. Rep. 2021, 11, 23238. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Yadav, S.; Yadav, S.; Verma, P.; Ojha, S. Artificial Intelligence: An Advanced Evolution in Forensics And Criminal Investigation. 2022. Available online: https://www.researchgate.net/profile/Sudhanshu-Mishra/publication/362815618_Artificial_Intelligence_An_Advanced_Evolution_In_Forensics_And_Criminal_Investigation/links/632c57ca873eca0c00a8f803/Artificial-Intelligence-An-Advanced-Evolution-In-Forensics-And-Criminal-Investigation.pdf (accessed on 27 February 2024).
- Mohammad, N.; Ahmad, R.; Kurniawan, A.; Mohd Yusof, M.Y.P. Applications of Contemporary Artificial In-telligence Technology in Forensic Odontology as Primary Forensic Identifier: A Scoping Review. Front. Artif. Intell. 2022, 5, 1049584. [Google Scholar] [CrossRef]
- Pomara, C.; Zappalà, S.A.; Salerno, M.; Sessa, F.; Esposito, M.; Cocimano, G.; Ippolito, S.; Miani, A.; Missoni, E.; Piscitelli, P. Migrants’ Human Rights and Health Protection during the COVID-19 Pandemic in the Mediterra-nean Sea: What We Have Learnt from Direct Inspections in Two Italian Hotspots. Front. Public Health 2023, 11, 1129267. [Google Scholar] [CrossRef]
- Patil, V.; Ingle, D.R. An association between Fingerprint Patterns with Blood Group and Lifestyle Based Diseases: A Review. Artif. Intell. Rev. 2020, 54, 1803–1839. [Google Scholar] [CrossRef]
- Leone, M. From Fingers to Faces: Visual Semiotics and Digital Forensics. Int. J. Semiot. Law-Revue Int. Sémiotique Juridique 2020, 34, 579–599. [Google Scholar] [CrossRef]
- Chauhan, S.; Sharma, V.; Siddhartha, I. Fingerprints analysis using AI Algorithm. Int. J. Med. Toxicol. Leg. Med. 2022, 25, 273–279. [Google Scholar] [CrossRef]
- Tyagi, A.; Tiwari, P.; Bhardwaj, P.; Chawla, H. Prognosis of sexual dimorphism with unfused hyoid bone: Artificial intelligence informed decision making with discriminant analysis. Sci. Justice 2021, 61, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Kayser, M.; Branicki, W.; Parson, W.; Phillips, C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci. Int. Genet. 2023, 65, 102870. [Google Scholar] [CrossRef] [PubMed]
- Tozzo, P.; Mazzobel, E.; Marcante, B.; Delicati, A.; Caenazzo, L. Touch DNA Sampling Methods: Efficacy Evaluation and Systematic Review. Int. J. Mol. Sci. 2022, 23, 15541. [Google Scholar] [CrossRef] [PubMed]
- Tozzo, P.; D’angiolella, G.; Brun, P.; Castagliuolo, I.; Gino, S.; Caenazzo, L. Skin Microbiome Analysis for Forensic Human Identification: What Do We Know So Far? Microorganisms 2020, 8, 873. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Salerno, M.; Pomara, C. The Interpretation of Mixed DNA Samples. In Handbook of DNA Profiling; Dash, H.R., Shrivastava, P., Lorente, J.A., Eds.; Springer: Singapore, 2022; pp. 997–1017. ISBN 978-981-16-4318-7. [Google Scholar]
- Sessa, F.; Salerno, M.; Bertozzi, G.; Messina, G.; Ricci, P.; Ledda, C.; Rapisarda, V.; Cantatore, S.; Turillazzi, E.; Pomara, C. Touch DNA: Impact of Handling Time on Touch Deposit and Evaluation of Different Recovery Techniques: An Experimental Study. Sci. Rep. 2019, 9, 9542. [Google Scholar] [CrossRef]
- Buckingham, A.K.; Harvey, M.L.; van Oorschot, R.A. The Origin of Unknown Source DNA from Touched Objects. Forensic Sci. Int. Genet. 2016, 25, 26–33. [Google Scholar] [CrossRef]
- Pfeifer, C.M.; Wiegand, P. Persistence of Touch DNA on Burglary-Related Tools. Int. J. Leg. Med. 2017, 131, 941–953. [Google Scholar] [CrossRef]
- Sessa, F.; Esposito, M.; Roccuzzo, S.; Cocimano, G.; Rosi, G.L.; Sablone, S.; Salerno, M. DNA Profiling from Fired Cartridge Cases: A Literature Review. Minerva Medicolegale 2023, 143, 34–43. [Google Scholar] [CrossRef]
- Coble, M.D.; Buckleton, J.; Butler, J.; Egeland, T.; Fimmers, R.; Gill, P.; Gusmão, L.; Guttman, B.; Krawczak, M.; Morling, N.; et al. DNA Commission of the International Society for Forensic Genetics: Recommendations on the Validation of Software Programs Performing Biostatistical Calculations for Forensic Genetics Applications. Forensic Sci. Int. Genet. 2016, 25, 191–197. [Google Scholar] [CrossRef]
- Tanzhaus, K.; Reiß, M.-T.; Zaspel, T. “I’ve Never Been at the Crime Scene!”—Gloves as Carriers for Secondary DNA Transfer. Int. J. Leg. Med. 2021, 135, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Gosch, A.; Courts, C. On DNA Transfer: The Lack and Difficulty of Systematic Research and How to do it Better. Forensic Sci. Int. Genet. 2019, 40, 24–36. [Google Scholar] [CrossRef]
- Samie, L.; Hicks, T.; Castella, V.; Taroni, F. Stabbing Simulations and DNA Transfer. Forensic Sci. Int. Genet. 2016, 22, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Pomara, C.; Esposito, M.; Grassi, P.; Cocimano, G.; Salerno, M. Indirect DNA Transfer and Forensic Implications: A Literature Review. Genes 2023, 14, 2153. [Google Scholar] [CrossRef]
- van Oorschot, R.A.; Szkuta, B.; Meakin, G.E.; Kokshoorn, B.; Goray, M. DNA Transfer in Forensic Science: A review. Forensic Sci. Int. Genet. 2018, 38, 140–166. [Google Scholar] [CrossRef] [PubMed]
- Fantinato, C.; Fonneløp, A.E.; Bleka, Ø.; Vigeland, M.D.; Gill, P. The Invisible Witness: Air and Dust as DNA Evidence of Human Occupancy in Indoor Premises. Sci. Rep. 2023, 13, 19059. [Google Scholar] [CrossRef]
- van Oorschot, R.A.H.; Meakin, G.E.; Kokshoorn, B.; Goray, M.; Szkuta, B. DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges. Genes 2021, 12, 1766. [Google Scholar] [CrossRef]
- Onofri, M.; Altomare, C.; Severini, S.; Tommolini, F.; Lancia, M.; Carlini, L.; Gambelunghe, C.; Carnevali, E. Direct and Secondary Transfer of Touch DNA on a Credit Card: Evidence Evaluation Given Activity Level Propositions and Application of Bayesian Networks. Genes 2023, 14, 996. [Google Scholar] [CrossRef]
- Barker, M.J. Connecting Applied and Theoretical Bayesian Epistemology: Data Relevance, Pragmatics, and the Legal Case of Sally Clark. J. Appl. Philos. 2016, 34, 242–262. [Google Scholar] [CrossRef]
- Taylor, D.; Samie, L.; Champod, C. Using Bayesian Networks to Track DNA Movement Through Complex Transfer Scenarios. Forensic Sci. Int. Genet. 2019, 42, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C. Forensic Genetic Analysis of Bio-Geographical Ancestry. Forensic Sci. Int. Genet. 2015, 18, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Pośpiech, E.; Teisseyre, P.; Mielniczuk, J.; Branicki, W. Predicting Physical Appearance from DNA Data—Towards Genomic Solutions. Genes 2022, 13, 121. [Google Scholar] [CrossRef]
First Author, Year, and Nationality | Article Title | AI Application | Main Findings |
---|---|---|---|
Schlecht et al., 2008, U.S.A. [41] | Machine-learning approaches for classifying haplogroup from Y chromosome STR data | The authors report ML approaches for classifying the haplogroup from Y chromosome STR data. | The authors introduce a novel alternative using modern ML algorithms to infer Y chromosome haplogroups with high accuracy by scoring a relatively small number of Y-linked short tandem repeats (STRs). The authors demonstrate that the application of MLA represents an integrated high-throughput analysis system for cost-effective and accurate classification of large numbers of samples into haplogroups. |
Pereira et al., 2011, Portugal [46] | PopAffiliator: online calculator for individual affiliation to a major population group based on 17 autosomal short tandem repeat genotype profile | The authors employ an ML model constructed from a dataset of approximately fifteen thousand individuals to identify individual population affiliation. | The authors introduce a free online calculator called PopAffiliator, (when checked it was not accessible at the link reported in the paper—http://cracs.fc.up.pt/popaffiliator, accessed on 27 February 2024), designed for individual population affiliation in three main population groups: Eurasian, East Asian, and sub-Saharan African. |
Mukunthan and Nagaveni, 2014, India [47] | Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique | Artificial neural network techniques were applied to DNA profiling and sequencing. | The authors discuss the challenges in genetic engineering and forensic identification using conventional techniques and algorithms for analyzing DNA profiles. The authors demonstrate that these methods involve complex computational steps and mathematical formulas could be useful in forensic identification. |
Taylor and Powers, 2016, Australia [48] | Teaching artificial intelligence to read electropherograms | The authors apply artificial neural networks (ANN) in order to recognize different aspects of an electropherogram. | The work demonstrates the application of an artificial neural network trained to interpret electropherograms, showcasing its ability to generalize to unseen profiles. |
Alfieri et al., 2018, United Kingdom [49] | DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning models | AI was applied to extract information from DNA evidence using a DNA methylation quantification assay for chronological age estimation. | The authors demonstrate the importance of AI in the analysis of data obtained through massively parallel sequencing (MPS). |
Adelman et al., 2019, USA [50] | Automated detection and removal of capillary electrophoresis artifacts due to spectral overlap | The authors apply an AI model (a series of mathematical models, created using symbolic regression achieved through genetic programming) in order to improve electropherogram analysis. | The authors conclude that by employing models in combination with a dynamic threshold, the presence of pull-up peaks within true alleles can be effectively addressed, resulting in the elimination of artefactual pull-up peaks and accurate peak height corrections, improving the interpretation of STR analysis |
Siino and Sears, 2020, USA [51] | Artificially intelligent scoring and classification engine for forensic identification | The authors enhance the Elston–Stewart algorithm to create a groundbreaking method for matching individuals with pedigrees based on likelihood ratio. This AI model incorporates a prediction cascade that utilizes gradient descent logistic regression, enabling iterative solutions for scenarios involving multiple missing persons. | The described innovative approach enhances the balance between sensitivity and specificity, improving the conventional kinship analysis tools. |
Li et al., 2021, China [52] | Validation studies of the ParaDNA® Intelligence System with artificial evidence items | The authors test a reliable STR profiling platform known as the ParaDNA Intelligence Test System. This innovative system enables investigators to obtain early tactical intelligence and make informed decisions regarding sample prioritization for detection. | The ParaDNA intelligence test is highly effective in producing valuable DNA profiles, particularly in cases involving blood, saliva, and semen samples that contain abundant DNA. |
Volgin et al., 2021, Australia [53] | Validation of a neural network approach for STR typing to replace human reading | The authors test an ML tool known as an artificial neural network (ANN), which can perform the same task as a human profile reader to interpret STR capillary electrophoresis profile data. | The tool’s accuracy in detecting allele peaks in reference profiles was found to be 99.7%, which was considered sufficiently high. |
Veldhuis et al., 2022, Netherlands [54] | Explainable artificial intelligence in forensics: Realistic explanations for number of contributor predictions of DNA profiles | The authors apply an ML approach to achieve impressive accuracy in determining the number of contributors (NOC) in short tandem repeat (STR) mixture DNA profiles. | The described tool can be used for the prediction of the number of contributors in a mixture profile. |
Chen et al., 2023, China [55] | Comprehensive evaluations of individual discrimination, kinship analysis, genetic relationship exploration and biogeographic origin prediction in Chinese Dongxiang group by a 60-plex DIP panel | In this study, the authors apply four AI algorithms and four biogeographic origin inference models in order to predict the biogeographic origins of individuals based on the results obtained through amplification and genotyping with the 60-plex panel. | The AI models applied to their data demonstrated that the biogeographic origin prediction model could be predicted accurately in 99.7% of biogeographic origin models based on three continents; this value decreased to 90.59% on a model based on five continents. |
Klosa et al., 2023, Poland [56] | A Machine-Learning-Based Approach to prediction of biogeographic ancestry within Europe | The authors apply three classifiers (Random Forest, Support Vector Machine (SVM), and XGBoost) to the prediction of biogeographic ancestry within Europe, in order to classify DNA samples from Slavic and non-Slavic individuals. | The best results were obtained using SVM that demonstrated an accuracy of 99.9% and F1-scores of 0.9846–1.000 for all classes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sessa, F.; Esposito, M.; Cocimano, G.; Sablone, S.; Karaboue, M.A.A.; Chisari, M.; Albano, D.G.; Salerno, M. Artificial Intelligence and Forensic Genetics: Current Applications and Future Perspectives. Appl. Sci. 2024, 14, 2113. https://doi.org/10.3390/app14052113
Sessa F, Esposito M, Cocimano G, Sablone S, Karaboue MAA, Chisari M, Albano DG, Salerno M. Artificial Intelligence and Forensic Genetics: Current Applications and Future Perspectives. Applied Sciences. 2024; 14(5):2113. https://doi.org/10.3390/app14052113
Chicago/Turabian StyleSessa, Francesco, Massimiliano Esposito, Giuseppe Cocimano, Sara Sablone, Michele Ahmed Antonio Karaboue, Mario Chisari, Davide Giuseppe Albano, and Monica Salerno. 2024. "Artificial Intelligence and Forensic Genetics: Current Applications and Future Perspectives" Applied Sciences 14, no. 5: 2113. https://doi.org/10.3390/app14052113
APA StyleSessa, F., Esposito, M., Cocimano, G., Sablone, S., Karaboue, M. A. A., Chisari, M., Albano, D. G., & Salerno, M. (2024). Artificial Intelligence and Forensic Genetics: Current Applications and Future Perspectives. Applied Sciences, 14(5), 2113. https://doi.org/10.3390/app14052113