New Advances in Audio Signal Processing
1. Introduction
- Models and methodologies used for the analysis of audio data to derive new information, especially those directed towards AI and Machine Learning-based sound analysis. With the recent growth of deep learning (DL), advanced AI techniques are nowadays employed for tasks such as the preliminary detection of diseases in human voice, sound event detection, speaker recognition or sound classification [6,7].
- The assessment of acoustic effects and/or relevant signals as indicators of the performance of another system (e.g., sound-based fault detection).
2. Overview of Published Articles
3. Conclusions
Conflicts of Interest
List of Contributions
- Strianese, M.; Torricelli, N.; Tarozzi, L.; Santangelo, P. Experimental Assessment of the Acoustic Performance of Nozzles Designed for Clean Agent Fire Suppression. Appl. Sci. 2023, 13, 186. https://doi.org/10.3390/app13010186.
- Kim, S.; Baek, J.; Lee, S. COVID-19 Detection Model with Acoustic Features from Cough Sound and Its Application. Appl. Sci. 2023, 13, 2378. https://doi.org/10.3390/app13042378.
- Tamulionis, M.; Sledevič, T.; Serackis, A. Investigation of Machine Learning Model Flexibility for Automatic Application of Reverberation Effect on Audio Signal. Appl. Sci. 2023, 13, 5604. https://doi.org/10.3390/app13095604.
- Atamer, S.; Altinsoy, M. Vacuum Cleaner Noise Annoyance: An Investigation of Psychoacoustic Parameters, Effect of Test Methodology, and Interaction Effect between Loudness and Sharpness. Appl. Sci. 2023, 13, 6136. https://doi.org/10.3390/app13106136.
- Lee, S.; Kim, H.; Jang, G. Weakly Supervised U-Net with Limited Upsampling for Sound Event Detection. Appl. Sci. 2023, 13, 6822. https://doi.org/10.3390/app13116822.
- Nanni, L.; Cuza, D.; Brahnam, S. Building Ensemble of Resnet for Dolphin Whistle Detection. Appl. Sci. 2023, 13, 8029. https://doi.org/10.3390/app13148029.
- Coccoluto, D.; Cesarini, V.; Costantini, G. OneBitPitch (OBP): Ultra-High-Speed Pitch Detection Algorithm Based on One-Bit Quantization and Modified Autocorrelation. Appl. Sci. 2023, 13, 8191. https://doi.org/10.3390/app13148191.
- Greco, D. A Feasibility Study for a Hand-Held Acoustic Imaging Camera. Appl. Sci. 2023, 13, 11110. https://doi.org/10.3390/app131911110.
- Wang, S.; Zhang, C. A Stable Sound Field Control Method for a Personal Audio System. Appl. Sci. 2023, 13, 12209. https://doi.org/10.3390/app132212209.
- Scarpiniti, M.; Parisi, R.; Lee, Y. A Scalogram-Based CNN Approach for Audio Classification in Construction Sites. Appl. Sci. 2024, 14, 90. https://doi.org/10.3390/app14010090.
References
- Gourishetti, S.; Grollmisch, S.; Abeßer, J.; Liebetrau, J. Potentials and Challenges of AI-based Audio Analysis in Industrial Sound Analysis. In Proceedings of the Conference: 48. Deutsche Jahrestagung für Akustik (DAGA), Stuttgart, Germany, 21–24 March 2022. [Google Scholar]
- Faundez-Zanuy, M.; Monte-Moreno, E. State-of-the-art in speaker recognition. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 7–12. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Tao, W.; Liotta, A.; Yang, D.; Li, X.; Gao, S.; Sun, Y.; Ge, W.; Zhang, W.; et al. A Systematic Review on Affective Computing: Emotion Models, Databases, and Recent Advances. Inf. Fusion 2022, 83–84, 19–52. [Google Scholar] [CrossRef]
- Merino-Martínez, R.; Sijtsma, P.; Snellen, M.; Ahlefeldt, T.; Antoni, J.; Bahr, C.J.; Blacodon, D.; Ernst, D.; Finez, A.; Funke, S. A review of acoustic imaging methods using phased microphone arrays. CEAS Aeronaut. J. 2019, 10, 197–230. [Google Scholar] [CrossRef]
- Ruslan, N.; Mamat, M.; Porle, R.; Parimon, N. A Comparative Study of Pitch Detection Algorithms for Microcontroller Based Voice Pitch Detector. Adv. Sci. Lett. 2017, 23, 11521–11524. [Google Scholar] [CrossRef]
- Deep Learning for Audio Signal Processing|IEEE Journals & Magazine. Available online: https://ieeexplore.ieee.org/document/8678825 (accessed on 20 February 2024).
- Costantini, G.; Di Leo, P.; Asci, F.; Zarezadeh, Z.; Marsili, L.; Errico, V.; Suppa, A.; Saggio, G. Machine learning based voice analysis in spasmodic dysphonia: An investigation of most relevant features from specific vocal tasks. In Proceedings of the 14th International Conference on Bio-Inspired Systems and Signal Processing—BIOSIGNALS, 2021, Vienna, Austria, 11–13 February 2021. [Google Scholar]
- Bogey, C.; Marsden, O.; Bailly, C. Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105. J. Fluid Mech. 2012, 701, 352–385. [Google Scholar] [CrossRef]
- Bogert, B.P. The quefrency alanysis of time series for echoes; Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking. Time Ser. Anal. 1963, 209–243. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Xia, T.; Spathis, D.; Brown, C.; Chauhan, J.; Grammenos, A.; Han, J.; Hasthanasombat, A.; Bondareva, E.; Dang, T.; Floto, A.; et al. COVID-19 Sounds: A Large-Scale Audio Dataset for Digital Respiratory Screening. In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual, 6–14 December 2021. [Google Scholar]
- Bhattacharya, D.; Sharma, N.K.; Dutta, D.; Chetupalli, S.R.; Mote, P.; Ganapathy, S.; Chandrakiran, C.; Nori, S.; Suhail, K.K.; Gonuguntla, S.; et al. Coswara: A respiratory sounds and symptoms dataset for remote screening of SARS-CoV-2 infection. Sci. Data 2023, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Orlandic, L.; Teijeiro, T.; Atienza, D. The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms. Sci. Data 2021, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. In Lecture Notes in Computer Science; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Swizherland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Mesaros, A.; Heittola, T.; Virtanen, T. A multi-device dataset for urban acoustic scene classification. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018, Surrey, UK, 19–20 November 2018. [Google Scholar]
- Stowell, D. Computational bioacoustics with deep learning: A review and roadmap. PeerJ 2022, 10, e13152. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, M.; Steixner, V.; Griessner, A.; Zierhofer, C. Fast fundamental frequency determination via adaptive autocorrelation. EURASIP J. Audio Speech Music Process. 2016, 2016, 17. [Google Scholar] [CrossRef]
- de Cheveigne, A.; Kawahara, H. YIN, a fundamental frequency estimator for speech and music. J. Acoust. Soc. Am. 2002, 111, 1917–1930. [Google Scholar] [CrossRef] [PubMed]
- Costantini, G.; Cesarini, V.; Leo, P.D.; Amato, F.; Suppa, A.; Asci, F.; Pisani, A.; Calculli, A.; Saggio, G. Artificial Intelligence-Based Voice Assessment of Patients with Parkinson’s Disease Off and On Treatment: Machine vs. Deep-Learning Comparison. Sensors 2023, 23, 2293. [Google Scholar] [CrossRef] [PubMed]
- Salles, R.S.; Ribeiro, P.F. The use of deep learning and 2-D wavelet scalograms for power quality disturbances classification. Electr. Power Syst. Res. 2023, 214, 108834. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantini, G.; Casali, D.; Cesarini, V. New Advances in Audio Signal Processing. Appl. Sci. 2024, 14, 2321. https://doi.org/10.3390/app14062321
Costantini G, Casali D, Cesarini V. New Advances in Audio Signal Processing. Applied Sciences. 2024; 14(6):2321. https://doi.org/10.3390/app14062321
Chicago/Turabian StyleCostantini, Giovanni, Daniele Casali, and Valerio Cesarini. 2024. "New Advances in Audio Signal Processing" Applied Sciences 14, no. 6: 2321. https://doi.org/10.3390/app14062321
APA StyleCostantini, G., Casali, D., & Cesarini, V. (2024). New Advances in Audio Signal Processing. Applied Sciences, 14(6), 2321. https://doi.org/10.3390/app14062321