Brief Review of Recent Developments in Fiber Lasers
Abstract
:1. Introduction
2. Heat Generation in Fiber Lasers
3. Rare Earth-Doped Fiber Lasers
3.1. Rare Earth Ions for Laser Applications
3.2. RE-Doped Radiation-Balanced Fiber Lasers
3.3. Power Evolution of RE-Doped Fiber Lasers
4. Raman Fiber Lasers
4.1. Heat Mitigation in Raman Fiber Lasers
4.2. Brightness Enhancement in Raman Fiber Lasers
5. Brillouin Fiber Lasers
Multiwavelength Fiber Lasers
6. Fiber Laser Applications
6.1. Material Processing
6.2. Military Sector
6.3. Medical Sector
6.4. Optical Frequency Combs
6.5. Quantum Applications
7. Conclusions
- The inherently flexible structure of fibers enables the use of much longer (up to several kilometers) gain distances, which provides higher optical gains, compared to other lasers.
- The optical feedback in fiber lasers is usually provided by fiber Bragg gratings imprinted in the fiber. This integrated design provides a stable optical cavity.
- In fiber lasers, single-mode fibers typically offer the best beam performance, which is very important in a number of applications.
- In fiber lasers, the optical path is enclosed within protective cladding layers, and as a result, the laser beam is less susceptible to exterior disturbance compared to traditional lasers.
- One solution to the heat generation problem is the development of radiation-balanced lasers based on cooling with anti-Stokes fluorescence. The efficiency of the laser cooling process can be improved by applying novel low-phonon fiber materials. The recent achievements in implementing new materials in high-power fiber lasers have been presented in ref. [109], where adverse interactions between the laser light and the host are discussed, and novel composition glass fiber designs and fabrication methodologies are presented.
- The alternative approach to mitigating heat dissipation in Raman lasers is based on an ultralow quantum defect.
- As already noted, the optimization of fiber materials is very important for the future development of high-power lasers. The absorption and radiation characteristics of fiber materials can be improved.
- Widely used pump technology such as laser diode pumps and fiber laser pumps can be improved in terms of pump efficiency and fiber absorption efficiency.
- The optical design of fiber lasers can be improved too. For example, specially designed fibers can be developed to achieve brightness enhancement in Raman lasers.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kepler, J. Dioptrice; Prague, Czech Republic, 1611. [Google Scholar]
- Huygens, C. Traité de la Lumière; Gressner & Schramm: Leipzig, Germany, 1690. [Google Scholar]
- Baid, J.L. An improved method of and means for producing optical images. Br. Pat. 1927, 285, 738. [Google Scholar]
- van Heel, A.C.S. A new method of transporting optical images without aberrations. Nature 1954, 173, 39. [Google Scholar] [CrossRef]
- Hirschowitz, B.I.; Curtiss, L.E.; Peters, C.W.; Pollard, H.M. Demonstration of a new gastroscope, the fiberscope. Gastroenterology 1958, 35, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Kapany, N.S. Fiber Optics. VI. Image Quality and Optical Insulation. J. Opt. Soc. Am. 1959, 49, 779–787. [Google Scholar] [CrossRef]
- Kao, K.C.; Hockham, G.A. Dielectric-fibre surface waveguides for optical frequencies. Proc. Inst. Electr. Eng. 1966, 133, 1151–1158. [Google Scholar] [CrossRef]
- Miya, T.; Terunuma, Y.; Hosaka, T.; Miyashita, T. Ultimate low-loss single-mode fibre at l.55 μm. Electron. Lett. 1979, 15, 106–108. [Google Scholar] [CrossRef]
- Stolen, R.H.; Ippen, E.P.; Tynes, A.R. Raman oscillation in glass optical waveguide. Appl. Phys. Lett. 1972, 20, 62–64. [Google Scholar] [CrossRef]
- Ippen, E.P.; Stolen, R.H. Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett. 1972, 21, 539–541. [Google Scholar] [CrossRef]
- Smith, R.G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 1972, 11, 2489–2494. [Google Scholar] [CrossRef]
- Hasegawa, A.; Tappert, F. Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers. I. Anomalous Dispersion. Appl. Phys. Lett. 1973, 23, 142–144. [Google Scholar] [CrossRef]
- Snitzer, E. Optical maser action of Nd3+ in a barium crown glass. Phys. Rev. Lett. 1961, 7, 444–446. [Google Scholar] [CrossRef]
- Desurvire, E. Erbium-Doped Fiber Amplifiers: Principles and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Yeh, P.; Yariv, A.; Marom, E. Theory of Bragg fiber. J. Opt. Soc. Am. 1978, 68, 1196–1201. [Google Scholar] [CrossRef]
- Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547–1549. [Google Scholar] [CrossRef]
- Li, J.; Duan, K.; Wang, Y.; Cao, X.; Zhao, W.; Guo, Y.; Lin, X. Theoretical analysis of the heat dissipation mechanism in Yb3+-doped double-clad fiber lasers. J. Mod. Opt. 2008, 55, 459–471. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. High-power fiber lasers with integrated rare-earth optical cooler. In Proceedings of the SPIE Laser Refrigeration of Solids III, San Francisco, CA, USA, 23–28 January 2010; Volume 7614, pp. 761406–761416. [Google Scholar]
- Chen, Y.; Yao, T.; Xiao, H.; Leng, J.; Zhou, P. Theoretical analysis of heat distribution in Raman fiber lasers and amplifiers employing pure passive fiber. IEEE Photonics J. 2020, 12, 1504713. [Google Scholar] [CrossRef]
- Broer, M.M.; Krol, D.M.; Di Giovanni, D.J. Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber. Opt. Lett. 1993, 18, 799–801. [Google Scholar] [CrossRef] [PubMed]
- Atkins, G.R.; Carter, A.L.G. Photodarkening in Tb3+-doped phosphosilicate and germanosilicate optical fibers. Opt. Lett. 1994, 19, 874–876. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.J. Science and technology of laser glass. J. Non-Cryst. Solids 1990, 123, 208–222. [Google Scholar] [CrossRef]
- Layne, C.B.; Lowdermilk, W.H.; Weber, M. Multiphonon relaxation of rare-earth ions in oxide glasses. J. Phys. Rev. B 1977, 16, 10–20. [Google Scholar] [CrossRef]
- Reisfeld, R.; Boehm, L.; Spector, N. Multiphonon relaxation rates and fluorescence lifetimes for Tm3+ in four oxide glasses. Chem. Phys. Lett. 1977, 49, 251–254. [Google Scholar] [CrossRef]
- Reisfeld, R.; Jørgensen, C.K. Excited state phenomena in vitreous materials. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Jr., Eyring, L., Eds.; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Nemova, G. Field Guide to Light-Matter Interaction; SPIE Press: Bellingham, WA, USA, 2022. [Google Scholar]
- Nemova, G. Field Guide to Laser Cooling Methods; SPIE Press: Bellingham, WA, USA, 2019. [Google Scholar]
- Bowman, S.R. Laser without internal heat generation. IEEE J. Quantum Electron. 1999, 35, 115–122. [Google Scholar] [CrossRef]
- Pringsheim, P. Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung. Z. Phys. 1929, 57, 739–746. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Athermal continuous-wave fiber amplifier. Opt. Commun. 2009, 282, 2571–2575. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Fiber amplifier with integrated optical cooler. J. Opt. Soc. Am. B 2009, 26, 2237–2241. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Raman fiber amplifier with integrated cooler. IEEE J. Light. Technol. 2009, 27, 5597–5601. [Google Scholar] [CrossRef]
- Yu, N.; Xiong, M.; Dragic, P.D. FDTD modeling of excitation-balanced, mJ-level pulse amplifiers in Yb-doped double-clad optical fibers. Opt. Express 2023, 31, 32404–32421. [Google Scholar] [CrossRef]
- Knall, J.M.; Engholm, M.; Boilard, T.; Bernier, M.; Digonnet, M.J.F. A radiation-balanced silica fiber amplifier. Phys. Rev. Lett. 2021, 127, 013903. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Laser cooling of solids. Rep. Prog. Phys. 2010, 73, 086501. [Google Scholar] [CrossRef]
- Nemova, G. Radiation-Balanced Lasers: History, Status, Potential. Appl. Sci. 2021, 11, 7539. [Google Scholar] [CrossRef]
- Xiao, Y.; Brunet, F.; Kanskar, M.; Faucher, M.; Wetter, A.; Holehouse, N. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks. Opt. Express 2012, 20, 3296. [Google Scholar] [CrossRef]
- Yu, H.L.; Wang, X.L.; Tao, R.M.; Zhou, P.; Chen, J.B. 1.5 kW, near diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator. Appl. Opt. 2014, 53, 8055. [Google Scholar] [CrossRef] [PubMed]
- Mashiko, Y.; Nguyen, H.K.; Kashiwagi, M.; Kitabayashi, T.; Shima, K.; Tanaka, D. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression. Proc. SPIE 2015, 9728, 29–34. [Google Scholar]
- Shi, W.; Fang, Q.; Xu, Y.; Qin, Y.G.; Fan, J.L.; Meng, X.J.; Zhang, Q.H. 1.63 kW monolithic continuous-wave single-mode fiber laser oscillator. J Optoelectron. Laser 2015, 26, 662. [Google Scholar]
- Yang, B.L.; Zhang, H.W.; Shi, C.; Wang, X.L.; Zhou, P.; Xu, X.J.; Chen, J.B.; Liu, Z.J.; Lu, Q.S. Mitigating transverse mode instability in all fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme. Opt. Express 2016, 24, 27828. [Google Scholar] [CrossRef] [PubMed]
- Ikoma, S.; Nguyen, H.K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing. Proc. SPIE 2017, 10083, 45–50. [Google Scholar]
- Kensuke, S.; Shinya, I.; Keisuke, U.; Yuya, T.; Masahiro, K.; Daiichiro, T. 5-kW single stage all-fber Yb-doped single-mode fiber laser for materials processing. Proc. SPIE 2018, 10512, 45–50. [Google Scholar]
- Yang, B.L.; Zhang, H.W.; Shi, C.; Tao, R.M.; Su, R.T.; Ma, P.F.; Wang, X.L.; Zhou, P.; Xu, X.J.; Lu, Q.S. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability. J. Opt. 2018, 20, 025802. [Google Scholar] [CrossRef]
- Yang, B.L.; Zhang, H.W.; Ye, Q.; Pi, H.Y.; Shi, C.; Tao, R.M.; Wang, X.L.; Xu, X.J. 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings. Chin. Opt. Lett. 2018, 16, 031407. [Google Scholar] [CrossRef]
- Krämer, R.G.; Möller, F.; Matzdorf, C.; Goebel, T.A.; Strecker, M.; Heck, M.; Richter, D.; Plötner, M.; Schreiber, T.; Tünnermann, A.; et al. Extremely robust femtosecond written fiber Bragg gratings for an ytterbium-doped fiber oscillator with 5 kW output power. Opt. Lett. 2020, 45, 1447. [Google Scholar] [CrossRef]
- Wang, Y.; Kitahara, R.; Kiyoyama, W.; Shirakura, Y.; Kurihara, T.; Nakanish, Y.; Yamamoto, T.; Nakayama, M.; Ikoma, S.; Shima, K. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad. Proc. SPIE 2020, 11260, 273–278. [Google Scholar]
- Xi, X.M.; Wang, P.; Yang, B.L.; Wang, X.L.; Zhang, H.W.; Ning, Y.; Han, K.; Wang, Z.F.; Zhou, P.; Xu, X.J.; et al. The output power of the all-fiber laser oscillator exceeds 7 kW. Chin. J. Lasers 2021, 48, 0116001. [Google Scholar]
- Nikolai, P.; Oleg, S.; Valentin, F.; Daniil, M.; Roman, Y.; Anton, F.; Alexey, D.; Ivan, U.; Valentin, G. High-efficient kW-level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000–1030 nm spectral range. Proc. SPIE 2020, 11260, 1126003. [Google Scholar]
- Kotov, L.V.; Likhachev, M.E.; Bubnov, M.M.; Medvedkov, O.I.; Yashkov, M.V.; Guryanov, A.N.; Lhermite, J.; Février, S.; Cormier, E. 75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm. Opt. Lett. 2013, 38, 2230. [Google Scholar] [CrossRef] [PubMed]
- Jebali, M.A.; Maran, J.N.; Larochelle, S. 264 W output power at 1585 nm in Er-Yb co-doped fiber laser using in-band pumping. Opt. Lett. 2014, 39, 3974. [Google Scholar] [CrossRef] [PubMed]
- Kotov, L.V.; Likhachev, M.E.; Bubnov, M.M.; Medvedkov, O.I.; Yashkov, M.V.; Guryanov, A.N.; Février, S.; Lhermite, J.; Cormier, E. Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W. Proc. SPIE 2014, 8961, 149–154. [Google Scholar]
- Daniel, C.; Herman, P.; Julia, L.; Scott, D.S. Single frequency 1560 nm Er:Yb fiber amplifier with 207 W output power and 50.5% slope efficiency. Proc. SPIE 2016, 9728, 426–431. [Google Scholar]
- De Varona, O.; Fittkau, W.; Booker, P.; Theeg, T.; Steinke, M.; Kracht, D.; Neumann, J.; Wessels, P. Single-frequency fiber amplifier at 1.5 μm with 100 W in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors. Opt. Express. 2017, 25, 24880. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Yao, Y.Z.; Tang, X.Y.; Chen, Y.F.; Yan, W.C.; Liu, T.G.; Song, H.L. Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity. Laser Phys. Lett. 2017, 14, 025105. [Google Scholar] [CrossRef]
- Lin, H.Q.; Feng, Y.J.; Feng, Y.T.; Barua, P.; Sahu, J.K.; Nilsson, J. 656 W Er-doped, Yb-free large-core fiber laser. Opt. Lett. 2018, 43, 3080. [Google Scholar] [CrossRef]
- Matniyaz, T.; Kong, F.; Kalichevsky-Dong, M.T.; Dong, L. 302 W single-mode power from an Er/Yb fber MOPA. Opt. Lett. 2020, 45, 2910. [Google Scholar] [CrossRef]
- Michaud, L.-C.; Veilleux, C.; Bilodeau, G.; Paquet, O.; Lebel-Cormier, M.-A.; Lemieux-Tanguay, M.; Pelletier-Ouellet, S.; Paradis, P.; Bellec, M.; Grégoire, N.; et al. 100-W-level single-mode ytterbium-free erbium fiber laser. Opt. Lett. 2021, 46, 2553. [Google Scholar] [CrossRef]
- Yu, W.L.; Xiao, Q.R.; Wang, L.L.; Zhao, Y.; Qi, T.C.; Yan, P.; Gong, M.L. 219.6 W large-mode-area Er: Yb co-doped fiber amplifier operating at 1600 nm pumped by 1018 nm fiber lasers. Opt. Lett. 2021, 46, 2192. [Google Scholar] [CrossRef]
- Yu, W.L.; Yan, P.; Qi, T.C.; Wu, Y.L.; Li, D.; Xiao, Q.R.; Gong, M.L. Highpower and high-brightness Er: Yb co-doped fiber MOPA operating at 1535 nm. Opt. Express 2022, 30, 16837. [Google Scholar] [CrossRef]
- Li, W.; Qiu, Q.; Yu, L.; Gu, Z.; He, L.; Liu, S.; Yin, X.; Zhao, X.; Peng, J.; Li, H.; et al. Er/Yb co-doped 345-W all-fiber laser at 1535 nm using hybrid fiber. Opt. Express 2023, 48, 3027–3030. [Google Scholar] [CrossRef]
- Stutzki, F.; Gaida, C.; Gebhardt, M.; Jansen, F.; Wienke, A.; Zeitner, U.; Fuchs, F.; Jauregui, C.; Wandt, D.; Kracht, D.; et al. 152 W average power Tm-doped fiber CPA system. Opt. Lett. 2014, 39, 4671. [Google Scholar] [CrossRef] [PubMed]
- Walbaum, T.; Heinzig, M.; Schreiber, T.; Eberhardt, R.; Tünnermann, A. Monolithic thulium fiber laser with 567 W output power at 1970 nm. Opt. Lett. 2016, 41, 2632. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Zhu, R.Z.; Zhang, B.; Liu, G.C.; Zhou, P.; Hou, J. 300 W-level, wavelength-widely-tunable, all-fber integrated thulium-doped fiber laser. Opt. Express 2016, 24, 11085. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, L.; Xing, S.H.; Pu, W. 342 W narrow-linewidth continuous-wave thulium-doped all-fber laser. Acta. Phys. Sin. 2016, 65, 194209. [Google Scholar] [CrossRef]
- Gaida, C.; Gebhardt, M.; Heuermann, T.; Stutzki, F.; Jauregui, C.; Limpert, J. Ultrafast thulium fber laser system emitting more than 1 kW of average power. Opt. Lett. 2018, 43, 5853. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.C.; Shen, C.F.; Shao, Z.H.; Wang, J.L.; Wang, F.; Zhao, Y.G.; Shen, D.Y. 790 W incoherent beam combination of a Tm-doped fiber laser at 1941 nm using a 3 × 1 signal combiner. Appl. Opt. 2018, 57, 5574. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Z.; Cao, C.; Xing, Y.B.; Liao, L.; Cao, R.T.; Zhang, F.F.; Chen, Y.S.; Wang, Y.B.; Peng, J.G.; Li, H.Q.; et al. 406 W narrow-linewidth all-fiber amplifier with Tm-doped fiber fabricated by MCVD. IEEE Photonics Technol. Lett. 2019, 31, 1779. [Google Scholar] [CrossRef]
- Zi, L.Y.; Bing, X.Y.; Lei, L.; Bo, W.Y.; Gang, P.J.; Qing, L.H.; Li, D.N.; Yan, L.J. 530 W all-fiber continuous-wave Tm-doped fiber laser. Acta. Phys. Sin. 2020, 69, 184209. [Google Scholar]
- Motard, A.; Louot, C.; Robin, T.; Cadier, B.; Manek-Hönninger, I.; Dalloz, N.; Hildenbrand-Dhollande, A. Diffraction limited 195-W continuous wave laser emission at 2.09 μm from a Tm3+, Ho3+ co-doped single-oscillator monolithic fiber laser. Opt. Express 2021, 29, 6599. [Google Scholar] [CrossRef]
- Ren, C.; Shen, Y.; Zheng, Y.; Mao, Y.; Wang, F.; Shen, D.; Zhu, H. Widely-tunable all-fiber Tm doped MOPA with > 1 kW of output power. Opt. Express 2023, 2931, 22733–22739. [Google Scholar] [CrossRef] [PubMed]
- Alexander, H.; Nikita, S.; John, H.; Adrian, C. High power resonantly pumped holmium-doped fiber sources. Proc. SPIE 2014, 8982, 898292. [Google Scholar]
- IPG Photonics. “High Power CW Fiber Lasers”. (IPG Photonics). Available online: https://www.ipgphotonics.com/en/products/lasers/highpower-cw-fiber-lasers (accessed on 8 February 2024).
- Garmire, E.; Pandarese, F.; Townes, C.H. Coherently driven molecular vibrations and light modulation. Phys. Rev. Lett. 1963, 11, 160–163. [Google Scholar] [CrossRef]
- Vermeulen, N.; Debaes, C.; Muys, P.; Theinpont, H. Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 2007, 99, 093903. [Google Scholar] [CrossRef]
- Vermeulen, N.; Debaes, C.; Thienpont, H. Mitigating heat dissipation in near- and mid-infrared silicon-based Raman lasers using CARS: I. Theoretical analysis. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 770–782. [Google Scholar] [CrossRef]
- Vermeulen, N.; Debaes, C.; Thienpont, H. Mitigating heat dissipation in near- and mid-infrared silicon-based Raman lasers using CARS: II. Numerical demonstration. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 783–788. [Google Scholar] [CrossRef]
- Bobbs, B.; Warner, C. Raman-resonant four-wave mixing and energy transfer. J. Opt. Soc. Am. B 1990, 7, 234–238. [Google Scholar] [CrossRef]
- Nemova, G.; Caloz, C. Heat Evacuation from Active Raman Media Using Frequency-Selective Dissipative Coupling. Phys. Rev. Res. 2021, 3, 013050. [Google Scholar] [CrossRef]
- Belanger, E.; Bernier, M.; Faucher, D.; Cote, D.; Vallee, R. Highpower and widely tunable all-fiber Raman laser. J. Light. Technol. 2008, 26, 1696–1701. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Ye, J.; Song, J.; Yao, T.; Zhou, P. Ultralow-quantum-defect Raman laser based on the boson peak in phosphosilicate fiber. Photonics Res. 2020, 8, 1155–1160. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Zhou, J.; Pan, W.; Gu, X.; Feng, Y. More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber. Opt. Lett. 2019, 44, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Shintani, H. Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 2008, 7, 870–877. [Google Scholar]
- Glick, Y.; Shamir, Y.; Wolf, A.A.; Dostovalov, A.V.; Babin, S.A.; Pearl, S. Highly efficient all-fiber continuous-wave Raman graded-index fiber laser pumped by a fiber laser. Opt. Lett. 2018, 43, 1027–1030. [Google Scholar] [CrossRef]
- Glick, Y.; Shamir, Y.; Aviel, M.; Sintov, Y.; Goldring, S.; Shafir, N.; Pearl, S. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement. Opt. Lett. 2018, 43, 4755–4758. [Google Scholar] [CrossRef]
- Chen, Y.; Leng, J.; Xiao, H.; Yao, T.; Zhou, P. Pure passive fiber enabled highly efficient Raman fiber amplifier with record kilowatt power. IEEE Access 2019, 7, 28334–28339. [Google Scholar] [CrossRef]
- Brillouin, L. Diffusion de la lumière et des Rayons X par un corps transparent homogène. Ann. Phys. 1922, 9, 88–122. [Google Scholar] [CrossRef]
- Mandelstam, L. Light scattering by inhomogeneous media. Zh. Russ. Fiz-Khim. 1926, 58, 381. [Google Scholar]
- Chiao, R.; Townes, C.; Stoicheff, B. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 1964, 12, 592–595. [Google Scholar] [CrossRef]
- Hill, K.O.; Kawasaki, B.S.; Johnson, D.C. CW Brillouin laser. Appl. Phys. Lett. 1976, 28, 608–609. [Google Scholar] [CrossRef]
- Shee, Y.G.; Al-Mansoori, M.H.; Yaakob, S.; Man, A.; Zamzuri, A.K.; Mahamd Adikan, F.R.; Mahdi, M.A. Millimeter wave carrier generation based on a double-Brillouin-frequency spaced fiber laser. Opt. Express 2012, 20, 13402–13408. [Google Scholar] [CrossRef]
- Abass, A.K.; Al-Mansoori, M.H.; Jamaludin, M.Z.; Abdullah, F.; Al-Mashhadani, T.F.; Ali, M.H. L-band multi-wavelength brillouin-raman fber laser with 20-GHz channel spacing. Fiber Integr. Opt. 2014, 33, 56–67. [Google Scholar] [CrossRef]
- Al-Mashhadani, T.F.; Al-Mashhadani, M.K.S.; Yucel, M.; Goktas, H.H. Influence of bidirectional cavity structure on the Brillouin Stokes signal characteristics in ring BFL. Optik 2019, 185, 359–363. [Google Scholar] [CrossRef]
- Al-Mansoori, M.H.; Al-Sheriyani, A.; Al-Nassri, S.; Hasoon, F.N. Generation of efficient 33 GHz optical combs using cascaded stimulated Brillouin scattering effects in optical fiber. Laser Phys. 2017, 27, 65112. [Google Scholar] [CrossRef]
- Al-Mansoori, M.H.; Al-Sheriyani, A.; Younis, M.A.A.; Mahdi, M.A. Widely tunable multiwavelength Brillouin-erbium fiber laser with triple Brillouin-shift wavelength spacing. Opt. Fiber Technol. 2018, 41, 21–26. [Google Scholar] [CrossRef]
- Al-Mashhadani, T.F. Erbium gain effects on Stokes signal performance in a Fabry-Perot Brillouin Erbium fiber laser. Opt. Quantum Electron. 2019, 51, 189. [Google Scholar] [CrossRef]
- Al-Mashhadani, T.F.; Al-Mashhadani, M.K.S.; Goktas, H.H.; Yucel, M.; Celebi, F.V. Widely triple Brillouin frequency shift multiwavelength Brillouin erbium fiber laser. Opt. Quantum 2020, 52, 288. [Google Scholar] [CrossRef]
- Al-Mashhadani, M.K.S.; Al-Mashhadani, T.F.; Goktas, H.H. Tunable 50 GHz laser comb generation of multiwavelength Brillouin erbium fber laser. Opt. Commun. 2020, 464, 125542. [Google Scholar] [CrossRef]
- Awsaj, M.K.; Al-Mashhadani, T.F.; Al-Mashhadani, M.K.S.; Ali, A.Y.; Zan, M.S.D.; Arsad, N. Multiwavelength fiber laser sources with 60 GHz Brillouin frequency shift. Opt. Quantum Electron. 2023, 55, 528. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, T.; Hao, Y.-Z.; Bai, H.-Y.; Yang, Y.-D.; Xiao, J.-L.; Chen, Y.-L.; Huang, Y.-Z. Wideband multiwavelength Brillouin fiber laser with switchable channel spacing. Appl. Opt. 2023, 62, 2130–2136. [Google Scholar] [CrossRef]
- Silva, L.C.B.; Segatto, M.E.V. Advances in multi-wavelength Brillouin fiber lasers: An outlook across different spectral regions. Opt. Fiber Technol. 2023, 76, 103246. [Google Scholar] [CrossRef]
- Bashan, G.; Diamandi, H.H.; Zehavi, E.; Sharma, K.; London, Y.; Zadok, A. A forward Brillouin fibre laser. Nat Commun. 2022, 13, 3554. [Google Scholar] [CrossRef]
- Sobih, M.; Crouse, P.L.; Li, L. Elimination of striation in laser cutting of mild steel. J. Phys. D Appl. Phys. 2007, 40, 6908–6916. [Google Scholar] [CrossRef]
- Wagner, F.; Grupp, M.; Vollertsen, F. Laser beam micro welding with single mode fibre lasers. In Proceedings of the Third International WLT-Conference on Lasers in Manufacturing (LIM), Munich, Germany, 13–16 June 2005; pp. 769–772. [Google Scholar]
- Ludewigt, K.; Liem, A.; Stuhr, U.; Jung, M. High-power laser development for laser weapons. In Hogh Power Lasers: Technology and Systems, Platforms, Effects III; SPIE: Strasbourg, France, 2019; Volume 11162, pp. 46–53. [Google Scholar]
- Baac, H.W.; Uribe-Patarroyo, N.; Bouma, B.E. High-energy pulsed Raman fiber laser for biological tissue coagulation. Opt. Express 2014, 22, 7113–7123. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Xu, W.; Hu, H.; Zhang, Z.; Li, Z.; Shu, R. Recent advances, applications, and perspectives in erbium-doped fiber combs. Photonics 2024, 11, 192. [Google Scholar] [CrossRef]
- Sheremet, A.S.; Petrov, M.I.; Iorsh, I.V.; Poshakinskiy, A.P.; Poddubny, A.N. Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations. Rev. Mod. Phys. 2023, 95, 015002. [Google Scholar] [CrossRef]
- Dragic, P.D.; Cavillon, M.; Ballato, J. Materials for optical fiber lasers: A review. Appl. Phys. Rev. 2018, 5, 041301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemova, G. Brief Review of Recent Developments in Fiber Lasers. Appl. Sci. 2024, 14, 2323. https://doi.org/10.3390/app14062323
Nemova G. Brief Review of Recent Developments in Fiber Lasers. Applied Sciences. 2024; 14(6):2323. https://doi.org/10.3390/app14062323
Chicago/Turabian StyleNemova, Galina. 2024. "Brief Review of Recent Developments in Fiber Lasers" Applied Sciences 14, no. 6: 2323. https://doi.org/10.3390/app14062323
APA StyleNemova, G. (2024). Brief Review of Recent Developments in Fiber Lasers. Applied Sciences, 14(6), 2323. https://doi.org/10.3390/app14062323