Phenolic Profiles and Antitumor Activity against Colorectal Cancer Cells of Seeds from Selected Ribes Taxa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Plant Material
2.3. Seed Oil Extraction
2.4. Extraction of Phenolics from Ribes Seeds
2.5. Determination of Total Phenol Content
2.6. Characterization of Phenolics by Liquid Chromatography–Mass Spectrometry
Sensitivity and Specificity of the LC-MS Technique
2.7. Cell Assays on Cancer and Normal Cell Lines
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolics and Oil Content
3.2. Phenolic Compound Profiles
N | Rt Min | Mass a m/z | Adduct | Fragment b | Formula | Identification | Identification Basis | Occurrence in Samples c |
---|---|---|---|---|---|---|---|---|
1 | 3.88 | 153.01868 | [M − H]− | 109.02970 | C7H6O4 | 3,4-Dihydroxybenzoic (protocatechuic) acid | Molecular ion [M − H]− m/z 153 and m/z 109, produced after the neutral loss of CO2 (44 Da) | 1B, 5B, 6, 7, 8, 9, 10 |
2 | 5.12 | 139.03909 | [M − H]− | 93.03460 | C7H6O3 | Salicylic acid | Molecular ion [M − H]− m/z 137, which further yielded a fragment ion at m/z 93 due to the loss of a CO2 group | 5A, 5B, 6, 7, 10, 11 |
3 | 8.72 | 179.03498 | [M − H]− | 135.04810 | C9H8O4 | Caffeic acid | Molecular ion [M − H]− m/z 179 and its characteristic product ion 135 due to the loss of the CO2 group | 1A,1B, 2, 5A, 5B, 6, 7, 10 |
4 | 13.92 | 167.03498 | [M − H]− | 152.00996 | C8H8O4 | Vanillic acid | Molecular ion [M − H]− m/z 167 and its characteristic product ion 152 due to the loss of CH4 | 1A,1B, 2, 5B, 6, 7, 8, 10 |
5 | 16.68 | 163.04007 | [M − H]− | 119.04881 | C9H8O3 | p-coumaric acid | Molecular ion [M − H]− m/z 163 and its characteristic product ion 119 due to the loss of the CO2 group | 1A,1B, 2, 5A, 5B, 6, 7, 8, 9, 11 |
6 | 24.56 | 137.02442 | [M − H]− | 93.03325 | C7H6O3 | 4-hydroxybenzoic acid | Molecular ion [M − H]− m/z 137 and its characteristic product ion 93, generated by the loss of the CO2 group | 1A,1B, 2, 3, 4, 5A, 5B, 6, 7, 8, 9, 10, 11 |
7 | 26.41 | 223.06120 | [M − H]− | 121.02821 | C11H12O5 | Sinapic acid | Molecular ion [M − H]− m/z 223 and the loss of 2CH3–CO2–CO (m/z 121) [23] | 1A,1B, 5B, 6, 7, 8, 9, 11 |
8 | 28.01 | 447.09328 | [M − H]− | 257.04496 | C21H20O11 | Populnin (kaempferol-7-O-glucoside) | Molecular ion [M − H]− m/z 447 and m/z 257, corresponding to the fragment [M-H-CO]−. The ejection of CO is notably followed by B ring rotation and bonding with the A ring to form the fused ring structure of m/z 257 [24] | 1A,1B, 6, 7, 8 |
9 | 28.2 | 193.05063 | [M − H]− | 134.03690 | C10H10O4 | Ferulic acid | Molecular ion [M − H]− m/z 193 m/z 134, corresponding to the loss of CO2 and CH3 | 1A,1B, 2, 4, 5A, 5B, 6, 7, 8, 9, 10, 11 |
10 | 28.62 | 303.04993 | [M + H]+ | 178.99749 | C15H10O7 | Quercetin | Molecular ion [M − H]− m/z 303 and m/z 179, originated after cleavage of the B ring by a Retro Diels-Alder (RDA) mechanism [25] | 1A,1B, 5B, 6, 7, 8, 9, 11 |
11 | 28.81 | 463.08820 | [M − H]− | 302.03696 | C21H20O12 | Isoquercitrin (quercetin-3-O-glucoside) | Molecular ion [M − H]− m/z 463 and m/z 302, corresponding to the aglycone of quercetin following the loss of a hexose ([M − H-162]− | 1B, 2, 4, 5A, 5B, 6, 7, 8 |
12 | 28.83 | 609.14611 | [M − H]− | 301.03474 | C27H30O16 | Rutin (quercetin 3-O rutinoside) | Molecular ion [M − H]− m/z 609 and fragment m/z 301 due to the loss of 308 Da (rutinose) | 1A,1B, 2, 3, 4, 5A, 5B, 6, 7, 8, 11 |
13 | 29.57 | 287.05501 | [M + H]+ | 153.01760 | C15H10O6 | Kaempferol | Molecular ion [M − H]− m/z 287 and m/z 153, formed by RDA fragmentation wherein bonds 1 and 3 undergo scission leading to the formation of the A+ ion (m/z 153) [26] | 1A, 1B, 5B, 6, 7, 8, 9, 11 |
14 | 29.75 | 447.09328 | [M − H]− | 230.98517 | C21H20O11 | Quercitrin (quercetin 3-O-rhamnoside) | Molecular ion [M − H]− m/z 447 and fragment m/z 231, corresponding to [quercetin-H-CO2-CO]− | 5B, 6, 7, 8, 9, 10, 11 |
15 | 29.77 | 317.03029 | [M − H]− | 151.00262 | C15H10O8 | Myricetin | Molecular ion [M − H]− m/z 317 and a typical MS/MS fragment at m/z 151, which corresponded to retrocyclization on the A-C ring (1,2A−) and the consecutive loss of CO (1,2A−-CO) [27] | 1A,1B, 2, 3, 4, 5A, 5B, 6, 7, 8, 10 |
16 | 29.80 | 285.04046 | [M − H]− | 121.02799 | C15H10O6 | Fisetin | Molecular ion [M − H]− m/z 285 and m/z 121, which correspond to fragmentation of the B ring (1,2B−) [28] | 5B, 6, 7, 9 |
17 | 29.80 | 285.04046 | [M − H]− | 175.03898 | C15H10O6 | Luteolin | Molecular ion [M − H]− m/z 285 and m/z 175, corresponding to the loss of C3O2-C2H2O [29] | 1A,1B, 5B, 6, 7, 8, 9 |
18 | 29.90 | 447.09328 | [M − H]− | 285.03995 | C21H20O11 | Juncein (luteolin-4′-O-glucoside) | Molecular ion [M − H]− m/z 447 and m/z 285, corresponding to luteolin aglycone, indicating the loss of a hexose | 1A,1B, 5B, 6, 7, 8, 11 |
19 | 29.92 | 447.09328 | [M − H]− | 255.02924 | C15H10O6 | Astragalin (kaempferol-3-O-glucoside) | Molecular ion [M − H]− m/z 447 and m/z 255, corresponding to the loss of CH2O from the aglycone (30 Da) [30] | 1A,1B, 5B, 6, 7, 10, 11 |
20 | 29.95 | 593.15119 | [M − H]− | 285.03973 | C27H30O15 | Nicotiflorin (kaempferol-3-O-rutinoside) | Molecular ion [M − H]− m/z 593 and m/z 285, corresponding to a deprotonated kaempferol aglycone and further loss of the rutinoside moiety | 1A,1B, 5B, 6, 7, 8, 10, 11 |
21 | 30.06 | 287.05611 | [M − H]− | 135.04382 | C15H12O6 | Eriodictyol | Molecular ion [M − H]− m/z 287 and m/z 135, corresponding to fragmentation of the B ring (1,3B−) [28] | 5B, 6, 7 |
22 | 30.53 | 435.12967 | [M − H]− | 273.07598 | C21H24O10 | Phloridzin (phloretin-2′-O-glucoside) | Molecular ion [M − H]− m/z 435 and m/z 273, corresponding to phloretin (dihydronaringenin) after the loss of hexosyl (glucose, 162 Da) | 5B, 6, 7 |
23 | 30.78 | 269.04555 | [M − H]− | 213.0545 | C15H10O5 | Galangin | Molecular ion [M − H]− m/z 269 and m/z 213, corresponding to the loss of 2CO (56 Da) | 1A, 3, 4, 5A, 5B, 6, 7, 8, 9, 10, 11 |
24 | 30.87 | 433.11292 | [M + H]+ | 271.05908 | C21H20O10 | Apigetrin (apigenin-7-O-glucoside) | Molecular ion [M + H]− m/z 433 and m/z 271, corresponding to the aglycon apiginin by the loss of glucose (162 Da) | 5B, 6, 11 |
25 | 31.14 | 271.06120 | [M − H]− | 119.04879 | C15H12O5 | Naringenin | Molecular ion [M − H]− m/z 271 and m/z 119, which correspond to the fragmentation of the B ring (1,3B−) [28] | 1A,1B, 2, 4, 5A, 5B, 6, 7, 10 |
3.3. Antiproliferative Activity of the Water/Methanol Seed Extracts on HT-29 Cancer Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brennan, R.M. Currants and Gooseberries. In Fruit Breeding, Vol. II Vine and Small Fruit Crops; Janick, J., Moore, J.N., Eds.; John Wiley & Sons. Inc.: Hoboken, NJ, USA, 1996; Chapter 3; pp. 191–295. [Google Scholar]
- Brennan, J.; Graham, J. Improving Fruit Quality in Rubus and Ribes Through Breeding. Funct. Plant Sci. Biotechnol. 2009, 3, 22–29. [Google Scholar]
- Jiménez-Aspee, F.; Thomas-Valdés, S.; Schulz, A.; Ladio, A.; Theoduloz, C.; Schmeda-Hirschmann, G. Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia. Food Sci. Nutr. 2015, 4, 595–610. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Rescic, J.; Schmitzer, V.; Stampar, F.; Slatnar, A.; Koron, D.; Veberic, R. Changes in fruit quality parameters of four Ribes species during ripening. Food Chem. 2015, 173, 363–374. [Google Scholar] [CrossRef]
- Jurgoński, A.; Fotschki, B.; Juśkiewicz, J. Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet. Eur. J. Nutr. 2015, 54, 991–999. [Google Scholar] [CrossRef]
- Michalak, M.; Kiełtyka-Dadasiewicz, A. Oils from fruit seeds and their dietetic and cosmetic significance. Herba Pol. 2018, 64, 63–70. [Google Scholar] [CrossRef]
- Lyashenko, S.; González-Fernández, M.J.; Gomez-Mercado, F.; Yunusova, S.; Denisenko, O.; Guil-Guerrero, J.L. Ribes taxa: A promising source of γ-linolenic acid-rich functional oils. Food Chem. 2019, 301, 125309. [Google Scholar] [CrossRef]
- Goffman, F.D.; Galletti, S. Gamma-linolenic acid and tocopherol contents in the seed oil of 47 accessions from several Ribes species. J. Agric. Food Chem. 2001, 49, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Bakowska-Barczak, A.M.; Schieber, A.; Kolodziejczyk, P. Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues. J. Agric. Food Chem. 2009, 57, 11528–11536. [Google Scholar] [CrossRef]
- AOAC. Fat (crude) in nuts and nut products. Gravimetric method (AOAC Official Method 948.22). In Officials Methods of Analysis of AOAC International, 17th ed.; Horwitz, W., Ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Lyashenko, S.; González-Fernández, M.J.; Gómez-Mercado, F.; Yunusova, S.; Denisenko, O.; Guil-Guerrero, J.L. Phenolic composition and in vitro antiproliferative activity of Borago spp. seed extracts on HT-29 cancer cells. Food Biosci. 2021, 42, 101043. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: London, UK, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Ramos-Bueno, R.P.; González-Fernández, M.J.; Guil-Guerrero, J.L. Various acylglycerols from common oils exert different antitumor activities on colorectal cancer cells. Nutr. Cancer 2016, 68, 518–529. [Google Scholar] [CrossRef]
- Vichitsakul, K.; Laowichuwakonnukul, K.; Soontornworajit, B.; Poomipark, N.; Itharat, A.; Rotkrua, P. Anti-proliferation and induction of mitochondria-mediated apoptosis by Garcinia hanburyi resin in colorectal cancer cells. Heliyon 2023, 22, e16411. [Google Scholar] [CrossRef]
- Van Hoed, V.; Barbouche, I.; De Clercq, N.; Dewettinck, K.; Slah, M.; Leber, E.; Verhé, R. Influence of filtering of cold pressed berry seed oils on their antioxidant profile and quality characteristics. Food Chem. 2011, 127, 1848–1855. [Google Scholar] [CrossRef]
- Kapasakalidis, P.G.; Rastall, R.A.; Gordon, M.H. Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues. J. Agric. Food Chem. 2006, 54, 4016–4021. [Google Scholar] [CrossRef]
- Granato, D.; Fidelis, M.; Haapakoski, M.; Lima, A.d.S.; Viil, J.; Hellström, J.; Rätsep, R.; Kaldmäe, H.; Bleive, U.; Azevedo, L.; et al. Enzyme-assisted extraction of anthocyanins and other phenolic compounds from blackcurrant (Ribes nigrum L.) press cake: From processing to bioactivities. Food Chem. 2022, 391, 133240. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, J.; Laaksonen, O.; Tahvonen, R.; Kallio, H. Effects of latitude and weather conditions on phenolic compounds in currant (Ribes spp.) cultivars. J. Agric. Food Chem. 2013, 61, 3517–3532. [Google Scholar] [CrossRef]
- Wójciak, M.; Mazurek, B.; Tyśkiewicz, K.; Kondracka, M.; Wójcicka, G.; Blicharski, T.; Sowa, I. Blackcurrant (Ribes nigrum L.) seeds—A valuable byproduct for further processing. Molecules 2022, 2, 8679. [Google Scholar] [CrossRef] [PubMed]
- Tuli, H.S.; Garg, V.K.; Bhushan, S.; Uttam, V.; Sharma, U.; Jain, A.; Sak, K.; Yadav, V.; Lorenzo, J.M.; Dhama, K.; et al. Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer: A signature step hinting towards clinical perfection. Transl. Oncol. 2023, 27, 101596. [Google Scholar] [CrossRef] [PubMed]
- Behbahani, M.; Sayedipour, S.; Pourazar, A.; Shanehsazzadeh, M. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Res. Pharm. Sci. 2014, 9, 463. [Google Scholar] [PubMed]
- Schulz, E.; Tohge, T.; Zuther, E.; Fernie, A.R.; Hincha, D.K. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci. Rep. 2016, 6, 34027. [Google Scholar] [CrossRef] [PubMed]
- Marcum, C.L. Fundamental Studies of Collision-Activated Dissociation (CAD) of Deprotonated Model Compounds Relevant to Lignin Degradation Products. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2016. [Google Scholar]
- March, R.E.; Miao, X.S. A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. Int. J. Mass Spectrom. 2004, 231, 157–167. [Google Scholar] [CrossRef]
- Dos Santos, C.; Galaverna, R.S.; Angolini, C.F.F.; Nunes, V.V.A.; De Almeida, L.F.R.; Ruiz, A.L.T.G.; De Carvalho, J.E.; Duarte, R.M.T.; Duarte, M.C.T.; Eberlin, M.N. Antioxidative, antiproliferative and antimicrobial activities of phenolic compounds from three Myrcia species. Molecules 2018, 23, 986. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Li, Q.M.; Van den Heuvel, H.; Claeys, M. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1357–1364. [Google Scholar] [CrossRef]
- Chernonosov, A.A.; Karpova, E.A.; Lyakh, E.M. Identification of phenolic compounds in Myricaria bracteata leaves by high-performance liquid chromatography with a diode array detector and liquid chromatography with tandem mass spectrometry. Rev. Bras. De Farmacogn. 2017, 27, 576–579. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Śliwka-Kaszyńska, M.; Anusiewicz, I.; Skurski, P. The Mechanism of a Retro-Diels–Alder Fragmentation of Luteolin: Theoretical Studies Supported by Electrospray Ionization Tandem Mass Spectrometry Results. Molecules 2022, 27, 1032. [Google Scholar] [CrossRef] [PubMed]
- Dantas, C.A.G.; Abreu, L.S.; da Cunha, H.N.; Veloso, C.A.G.; Souto, A.L.; Agra, M.d.F.; Costa, V.C.d.O.; da Silva, M.S.; Tavares, J.F. Dereplication of phenolic derivatives of three Erythroxylum species using liquid chromatography coupled with ESI-MSn and HRESIMS. Phytochem. Anal. 2021, 32, 1011–1026. [Google Scholar] [CrossRef]
- Liu, B.; Li, Z. Black currant (Ribes nigrum L.) extract induces apoptosis of MKN-45 and TE-1 cells through MAPK-and PI3K/Akt-mediated mitochondrial pathways. J. Med. Food 2016, 19, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Suffness, M.; Pezzuto, J.M. Assays related to cancer drug discovery. In Methods in Plant Biochemistry: Assays for Bioactivity; Hostettmann, K., Ed.; Academic Press: London, UK, 1990; pp. 71–133. [Google Scholar]
- Yang, Y.; Lei, Z.; Zhao, M.; Wu, C.; Wang, L.; Xu, Y. Microwave-assisted extraction of an acidic polysaccharide from Ribes nigrum L.: Structural characteristics and biological activities. Ind. Crops Prod. 2020, 147, 112249. [Google Scholar] [CrossRef]
- Chelh, T.C.; Lyashenko, S.; Lahlou, A.; Belarbi, E.-H.; Rincón-Cervera, M.; Rodríguez-García, I.; Urrestarazu-Gavilán, M.; López-Ruiz, R.; Guil-Guerrero, J.L. Buglossoides spp. seeds, a land source of health-promoting n-3 PUFA and phenolic compounds. Food Res. Int. 2022, 157, 111421. [Google Scholar] [CrossRef]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef]
Code | Samples | Sample Location | Total Oil Content g/100 g Seeds 1,2,3 | TPC (mg CAE/g Seeds) 1,2,3 | TPC (mg CAE/g Oil) 1,2,3 | Botanical Garden Accession Number |
---|---|---|---|---|---|---|
Subgenus Ribes (Currants) | ||||||
Sect. Berisia Spach (Alpine currants) | ||||||
1A | R. alpinum | Sukachev Institute of Forest of the Siberian Branch of the RAS, Krasnoyarsk, Russia | 19.9 ± 0.5 b | 36.9 ± 1.8 d | 7.3 ± 0.3 e | 45 |
1B | R. alpinum | Sierra de Baza, Granada, Spain | 12.7 ± 0.4 f | 33.4 ± 0.9 de | 4.2 ± 0.1 hi | |
2 | R. pulchellum | Sukachev Institute of Forest of the Siberian Branch of the RAS, Krasnoyarsk, Russia | 23.0 ± 1.0 a | 34.2 ± 1.2 de | 7.9 ± 0.2 de | 79 |
Sect. Coreosma (Spach) Jancz. (Black Currants) | ||||||
3 | R. dikuscha | Botanical Garden of North-Eastern Federal University, Yakutsk, Russia | 17.8 ± 0.2 c | 30.5 ± 2.4 e | 5.4 ± 0.0 g | 41 |
4 | R. hudsonianum | Botanical Garden of North-Eastern Federal University, Yakutsk, Russia | 25.6 ± 0.8 a | 46.1 ± 3.2 c | 11.8 ± 0.1 b | 47 |
5A | R. nigrum ‘Hara katarlik’ | Botanical Garden of North-Eastern Federal University, Yakutsk, Russia | 18.4 ± 0.1 b | 53.4 ± 2.5 b | 9.8 ± 0.2 c | 50 |
5B | R. nigrum ‘Koksa’ | Botanical Garden of North-Eastern Federal University, Yakutsk, Russia | 16.3 ± 0.0 de | 94.8 ± 3.4 a | 15.5 ± 0.1 a | 49 |
6 | Ribes ‘Algo’ Yakutskaya | Botanical Garden of North-Eastern Federal University, Yakutsk, Russia | 17.0 ± 0.3 cd | 48.9 ± 2.8 bc | 8.3 ± 0.2 d | 48 |
7 | Ribes ‘Erkeeni’ | Botanical Garden of North-Eastern Federal University, Yakutsk, Russia | 18.3 ± 0.2 bc | 49.0 ± 2.6 b | 9.0 ± 0.2 cd | 52 |
8 | Ribes ‘Myuryucheene’ | Botanical Garden of North-Eastern Federal University, Yakutsk, Russia | 17.7 ± 0.6 c | 34.4 ± 1.9 de | 6.1 ± 0.4 f | 51 |
Sect. Ribes (Red Currants) | ||||||
9 | R. glabellum | Botanical Garden of North-Eastern Federal University, Yakutsk, Russia | 14.9 ± 0.4 e | 30.8 ± 2.0 e | 4.6 ± 0.2 h | 46 |
10 | R. triste | Botanical Garden of North-Eastern Federal University, Yakutsk, Russia | 18.5 ± 0.5 bc | 31.2 ± 2.9 e | 5.8 ± 0.3 fg | 41 |
11 | R. rubrum | Dendropark “Alexandria” NAS of Ukraine, Belaja Tserkov, Ukraine | 15.0 ± 0.2 e | 25.8 ± 3.1 f | 3.9 ± 0.1 i | - 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyashenko, S.; López-Ruiz, R.; García-Cervantes, A.M.; Rodríguez-García, I.; Yunusova, S.; Guil-Guerrero, J.L. Phenolic Profiles and Antitumor Activity against Colorectal Cancer Cells of Seeds from Selected Ribes Taxa. Appl. Sci. 2024, 14, 2428. https://doi.org/10.3390/app14062428
Lyashenko S, López-Ruiz R, García-Cervantes AM, Rodríguez-García I, Yunusova S, Guil-Guerrero JL. Phenolic Profiles and Antitumor Activity against Colorectal Cancer Cells of Seeds from Selected Ribes Taxa. Applied Sciences. 2024; 14(6):2428. https://doi.org/10.3390/app14062428
Chicago/Turabian StyleLyashenko, Svetlana, Rosalía López-Ruiz, Ana Minerva García-Cervantes, Ignacio Rodríguez-García, Svetlana Yunusova, and José Luis Guil-Guerrero. 2024. "Phenolic Profiles and Antitumor Activity against Colorectal Cancer Cells of Seeds from Selected Ribes Taxa" Applied Sciences 14, no. 6: 2428. https://doi.org/10.3390/app14062428
APA StyleLyashenko, S., López-Ruiz, R., García-Cervantes, A. M., Rodríguez-García, I., Yunusova, S., & Guil-Guerrero, J. L. (2024). Phenolic Profiles and Antitumor Activity against Colorectal Cancer Cells of Seeds from Selected Ribes Taxa. Applied Sciences, 14(6), 2428. https://doi.org/10.3390/app14062428