Prediction and Factor Analysis of Liquefaction Ground Subsidence Based on Machine-Learning Techniques
Abstract
:1. Introduction
2. Machine-Learning Algorithm and Factor Analysis
2.1. Overview of Gradient-Boosting Decision Tree
2.2. Factor Analysis of Exploratory Data Analysis
2.2.1. Overview of Exploratory Data Analysis
2.2.2. Description of SHapley Additive exPlanations
2.2.3. Components of EDA
3. Development of Prediction Model of Ground Subsidence
3.1. Description of Database
3.1.1. Data about Ground Subsidence Because of Liquefaction
3.1.2. Explanatory Valuables
3.2. Description of Prediction Model
3.3. Adjustment of Hyperparameters for Machine-Learning Models
3.4. Dataset Splitting
3.5. Evaluation Metrics
3.6. Additive Feature Attribution Methods
3.6.1. SHAP Values
3.6.2. SHAP Interaction Values
4. Results and Discussion
4.1. Model Training Results
4.2. Model Performance
4.3. Global Explanations of Prediction Model Based on SHAP
4.3.1. Feature Importance
4.3.2. Effect of Soft Ground on the Amount of Subsidence
4.4. Local Explanations of Prediction Model Based on SHAP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seed, R.B.; Cetin, K.O.; Moss, R.E.S.; Kammerer, A.M.; Wu, J.; Pestana, J.M.; Reimer, M.F. Recent Advances in Soil Liquefaction Engineering and Seismic Site Response Evaluation. In Proceedings of the 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, USA, 31 March 2001. [Google Scholar]
- Seed, H.B.; Idriss, I.M. Simplified Procedure for Evaluating Soil Liquefaction Potential. J. Soil Mech. Found. Div. 1971, 97, 1249–1273. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Yoshida, N.; Kiku, H. Liquefaction during the 2004 Niigata-Ken Chuetsu Earthquake—General Aspect and Geotechnical and Geomorphic Conditions. Doboku Gakkai Ronbunshuu C 2006, 62, 263–276. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Senna, S. Liquefaction and Their Site Conditions in Kanto Region during the 2011 Off the Pacific Coast of Tohoku Earthquake. J. JAEE 2015, 15, 2_25–2_44. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Senna, S.; Ozawa, K. Liquefaction and its Characteristics during the 2016 Kumamoto Earthquake. J. J. JAEE 2017, 17, 4_81–4_100. [Google Scholar] [CrossRef]
- Watabe, Y.; Nishimura, S. Ground Movements and Damage in Satozuka District, Sapporo Due to 2018 Hokkaido Eastern Iburi Earthquake. Soils Found. 2020, 60, 1331–1356. [Google Scholar] [CrossRef]
- Kazama, M. Overview of the Damages of the 2011 Off the Pacific Coast of Tohoku Earthquake and Its Geotechnical Problems. Jpn. Geotech. J. 2012, 7, 1–11. [Google Scholar] [CrossRef]
- Yasuda, S.; Harada, K.; Ishikawa, K.; Kanemaru, Y. Characteristics of Liquefaction in Tokyo Bay Area by the 2011 Great East Japan Earthquake. Soils Found. 2012, 52, 793–810. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Mori, T.; Kazama, M.; Yoshida, N. Liquefaction in Tohoku District during the 2011 off the Pacific Coast of Tohoku Earthquake. Soils Found. 2012, 52, 811–829. [Google Scholar] [CrossRef]
- Abe, H.; Higashi, M.; Higuchi, S.; Inada, A.; Ito, A.; Iwamoto, H.; Kamikaseda, S.; Kawasaki, K.; Kusunoki, K.; Sato, S.; et al. Ground Failures on Reclaimed Land during the 2011 Tohoku Earthquake: A Case Study in Urayasu City, Japan. Quat. Int. 2016, 397, 555–562. [Google Scholar] [CrossRef]
- Yasuda, S.; Ishikawa, K. Several Features of Liquefaction-Induced Damage to Houses and Buried Lifelines During the 2011 Great East Japan. In Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, 1–4 March 2012; pp. 825–836. [Google Scholar]
- Towhata, I.; Kiku, H.; Taguchi, Y. Technical and Societal Problems to Be Solved in Geotechnical Issues. In Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, 1–4 March 2012; pp. 837–848. [Google Scholar]
- Cubrinovski, M. Liquefaction-Induced Damage in the 2010–2011 Christchurch (New Zealand) Earthquakes. In Proceedings of the 7th International Conference on Case Histories in Geotechnical Engineering, Chicago, IL, USA, 4 May 2013. [Google Scholar]
- Cubrinovski, M.; Henderson, D.; Bradley, B. Liquefaction Impacts in Residential Areas in the 2010–2011 Christchurch Earthquakes. In Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, 1–4 March 2012. [Google Scholar]
- Von Terzaghi, K. Die Berechnung der Durchassigkeitsziffer des Tones Aus Dem Verlauf der Hydrodynamischen Spannungs. Erscheinungen. Sitzungsber. Akad. Wiss. Math. Naturwiss. Kl. Abt. 2A 1923, 132, 105–124. [Google Scholar]
- Von Terzaghi, K. The Shearing Resistance of Saturated Soils and the Angle between the Planes of Shear. First Int. Conf. Soil Mech. 1936, 1, 54–59. [Google Scholar]
- Gabel, L.L.S.; O’Brien, F.E.; Allan, J.C.; Bauer, J.M. Tsunami Evacuation Analysis of Communities Surrounding the Coos Bay Estuary: Building Community Resilience on the Oregon Coast (Technical Report O-19-07); Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2019; p. 65.
- Guidelines for Considering Liquefaction Countermeasures for Evacuation Routes in Kochi Prefecture. Available online: https://www.pref.kochi.lg.jp/soshiki/010201/files/2021041300261/tebiki.pdf (accessed on 16 December 2023).
- Waga Machi Hazard Map. Available online: https://disaportal.gsi.go.jp/hazardmapportal/hazardmap/index.html (accessed on 18 December 2023).
- Boulanger, R.W.; Idriss, I.M.; Boulanger, R.W. CPT and SPT Based Liquefaction Triggering Procedures; Report No. UCD/CGM-14/01; Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, College of Engineering, University of California: Davis, CA, USA, 2014. [Google Scholar]
- Matsuoka, M.; Wakamatsu, K.; Hashimoto, M. Liquefaction Potential Estimation Based on the 7.5-Arc-Second Japan Engineering Geomorphologic Classification Map. J. Jpn. Assoc. Earthq. Eng. 2011, 11, 2_20–2_39. [Google Scholar] [CrossRef]
- Zhu, J.; Baise, L.G.; Thompson, E.M. An Updated Geospatial Liquefaction Model for Global Application. Bull. Seismol. Soc. Am. 2017, 107, 1365–1385. [Google Scholar] [CrossRef]
- Demir, S. Numerical Investigation of the Effects of Ground Motion Characteristics on the Seismic Behavior of Liquefiable Soil. Period. Polytech. Civ. Eng. 2023, 67, 24–35. [Google Scholar] [CrossRef]
- Ghani, S.; Sapkota, S.C.; Singh, R.K.; Bardhan, A.; Asteris, P.G. Modelling and Validation of Liquefaction Potential Index of Fine-Grained Soils Using Ensemble Learning Paradigms. Soil Dyn. Earthq. Eng. 2024, 177, 108399. [Google Scholar] [CrossRef]
- Ozsagir, M.; Erden, C.; Bol, E.; Sert, S.; Özocak, A. Machine Learning Approaches for Prediction of Fine-Grained Soils Liquefaction. Comput. Geotech. 2022, 152, 105014. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Shi, W. Seismic Control of Adaptive Variable Stiffness Intelligent Structures Using Fuzzy Control Strategy Combined with LSTM. J. Build. Eng. 2023, 78, 107549. [Google Scholar] [CrossRef]
- Galupino, J.; Dungca, J. Estimating Liquefaction Susceptibility Using Machine Learning Algorithms with a Case of Metro Manila, Philippines. Appl. Sci. 2023, 13, 6549. [Google Scholar] [CrossRef]
- Kuwabara, K.; Matsuoka, M. Estimation of Liquefaction Susceptibility in Japan Using Machine Learning Approach. J. Jpn. Assoc. Earthq. Eng. 2021, 21, 2_70–2_89. [Google Scholar] [CrossRef]
- Jas, K.; Dodagoudar, G.R. Explainable Machine Learning Model for Liquefaction Potential Assessment of Soils Using XGBoost-SHAP. Soil Dyn. Earthq. Eng. 2023, 165, 107662. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Carnevale, L.; Floramo, G.; Di Fabrizio, D.; Arena, S.; Montalto, A.S.; Impellizzeri, P.; Romeo, C.; Villari, M. Towards a Precision Medicine Solution for Optimal Pediatric Laparoscopy: An Exploratory Data Analysis for Features Selections. Biomed. Signal Process. Control. 2024, 88, 105321. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, M.K.; Dwivedi, R.K. Exploratory Data Analysis and Deception Detection in News Articles on Social Media Using Machine Learning Classifiers. Ain Shams Eng. J. 2023, 14, 102166. [Google Scholar] [CrossRef]
- Gupta, U.; Sharma, R. Analysis of Criminal Spatial Events in India Using Exploratory Data Analysis and Regression. Comput. Electr. Eng. 2023, 109, 108761. [Google Scholar] [CrossRef]
- Indrakumari, R.; Poongodi, T.; Jena, S.R. Heart Disease Prediction Using Exploratory Data Analysis. Procedia Comput. Sci. 2020, 173, 130–139. [Google Scholar] [CrossRef]
- Chakri, P.; Pratap, S.; Lakshay; Gouda, S.K. An Exploratory Data Analysis Approach for Analyzing Financial Accounting Data Using Machine Learning. Decis. Anal. J. 2023, 7, 100212. [Google Scholar] [CrossRef]
- Doran, D.; Schulz, S.; Besold, T.R. What Does Explainable AI Really Mean? A New Conceptualization of Perspectives. arXiv 2017, arXiv:1710.00794. [Google Scholar] [CrossRef]
- Futia, G.; Vetrò, A. On the Integration of Knowledge Graphs into Deep Learning Models for a More Comprehensible AI—Three Challenges for Future Research. Information 2020, 11, 122. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
- Štrumbelj, E.; Kononenko, I. Explaining Prediction Models and Individual Predictions with Feature Contributions. Knowl. Inf. Syst. 2014, 41, 647–665. [Google Scholar] [CrossRef]
- Pathy, A.; Meher, S.; P, B. Predicting Algal Biochar Yield Using EXtreme Gradient Boosting (XGB) Algorithm of Machine Learning Methods. Algal Res. 2020, 50, 102006. [Google Scholar] [CrossRef]
- Prasertpong, P.; Onsree, T.; Khuenkaeo, N.; Tippayawong, N.; Lauterbach, J. Exposing and Understanding Synergistic Effects in Co-Pyrolysis of Biomass and Plastic Waste via Machine Learning. Bioresour. Technol. 2023, 369, 128419. [Google Scholar] [CrossRef]
- Woldesellasse, H.; Tesfamariam, S. Prediction of Lateral Spreading Displacement Using Conditional Generative Adversarial Network (CGAN). Soil Dyn. Earthq. Eng. 2022, 156, 107214. [Google Scholar] [CrossRef]
- Mangalathu, S.; Hwang, S.-H.; Jeon, J.-S. Failure Mode and Effects Analysis of RC Members Based on Machine-Learning-Based SHapley Additive ExPlanations (SHAP) Approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
- Somala, S.N.; Chanda, S.; Karthikeyan, K.; Mangalathu, S. Explainable Machine Learning on New Zealand Strong Motion for PGV and PGA. Structures 2021, 34, 4977–4985. [Google Scholar] [CrossRef]
- Nankai Trough Megathrust Earthquake Model Study Group. Available online: https://www.bousai.go.jp/jishin/nankai/model/ (accessed on 18 December 2023).
- Tables Explaining the JMA Seismic Intensity Scale. Available online: https://www.data.jma.go.jp/eqev/data/kyoshin/kaisetsu/calc_sindo.html (accessed on 20 December 2023).
- Digital National land Information Download Sites. Available online: http://nlftp.mlit.go.jp/ksj/ (accessed on 18 December 2023).
- Wakamatsu, K.; Matsuoka, M. Nationwide 7.5-Arc-Second Japan Engineering Geomorphological Classification Map and Vs30 Zoning. J. Disaster Res. 2013, 8, 904–911. [Google Scholar] [CrossRef]
- Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a New Terrain Descriptor Using SRTM-DEM: Mapping Terra-Firme Rainforest Environments in Amazonia. Remote Sens. Environ. 2008, 112, 3469–3481. [Google Scholar] [CrossRef]
- Yamazaki, D.; Togashi, S.; Takeshima, A.; Sayama, T. High-Resolution Flow Direction Map of Japan. J. JSCE 2020, 8, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-H. Predicting and Analyzing the Fill Factor of Non-Fullerene Organic Solar Cells Based on Material Properties and Interpretable Machine-Learning Strategies. Sol. Energy 2024, 267, 112191. [Google Scholar] [CrossRef]
- Zhu, X.-W.; Xin, Y.-J.; Ge, H.-L. Recursive random forests enable better predictive performance and model interpretation than variable selection using LASSO. J. Chem. Inf. Model. 2015, 55, 736–746. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Jia, B.; Qu, X.; Qin, M. Prediction of Oxygen Evolution Activity of NiCoFe-oxide Catalysts via Machine Learning. ACS Omega 2022, 7, 14160–14164. [Google Scholar] [CrossRef] [PubMed]
- National Ground Information Search Sites. Available online: http://www.kunijiban.pwri.go.jp (accessed on 18 December 2023).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Tarwidi, D.; Pudjaprasetya, S.R.; Adytia, D.; Apri, M. Optimized XGBoost-Based Machine Learning Method for Predicting Wave Run-up on a Sloping Beach. MethodsX 2023, 10, 102119. [Google Scholar] [CrossRef] [PubMed]
- Probst, P.; Bischl, B.; Boulesteix, A.-L. Tunability: Importance of Hyperparameters of Machine Learning Algorithms. arXiv 2018, arXiv:1802.09596. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of Undrained Shear Strength Using Extreme Gradient Boosting and Random Forest Based on Bayesian Optimization. Geosci. Front. 2021, 12, 469–477. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. arXiv 2019, arXiv:1907.10902. [Google Scholar] [CrossRef]
- Bischl, B.; Richter, J.; Bossek, J.; Horn, D.; Thomas, J.; Lang, M. mlrMBO: Modular framework for model-based optimization of expensive black-box functions. arXiv 2017, arXiv:1703.03373. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. Adv. Neural Inf. Process. Syst. 2012, 4, 2951–2959. [Google Scholar]
- Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-Based Optimization for General Algorithm Configuration. In Proceedings of the Learning and Intelligent Optimization: 5th International Conference, LION 5, Rome, Italy, 17–21 January 2011; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6683, pp. 507–523. [Google Scholar]
- Nguyen, T.; Tran, N.; Nguyen, B.M.; Nguyen, G. A Resource Usage Prediction System Using Functional-Link and Genetic Algorithm Neural Network for Multivariate Cloud Metrics. In Proceedings of the 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA), Paris, France, 20–22 November 2018; pp. 49–56. [Google Scholar]
- Hyndman, R. Another Look at Forecast Accuracy Metrics for Intermittent Demand. Foresight Int. J. Appl. Forecast. 2006, 4, 43–46. [Google Scholar]
- Jierula, A.; Wang, S.; OH, T.M.; Wang, P. Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using Artificial Neural Networks with Acoustic Emission data. Appl. Sci. 2021, 11, 2314. [Google Scholar] [CrossRef]
- Flores, B.E. Pragmatic View of Accuracy Measurement in Forecasting. Omega 1986, 14, 93–98. [Google Scholar] [CrossRef]
- Sanders, N.R. Measuring Forecast Accuracy: Some Practical Suggestions. Prod. Inventory Manag. J. 1997, 38, 43–46. [Google Scholar]
- Rakicevic, Z.; Vujosevic, M. Focus Forecasting in Supply Chain: The Case Study of Fast Moving Consumer Goods Company in Serbia. Serbian J. Manag. 2015, 10, 3–17. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-mean-square error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not. Geosci. Model. Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.G.; Lee, S.-I. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv 2018, arXiv:1802.03888. [Google Scholar] [CrossRef]
- Fujimoto, K.; Kojadinovic, I.; Marichal, J.-L. Axiomatic characterization of probabilistic and cardinal–probabilistic interaction indices. Games Econ. Behav. 2006, 55, 72–99. [Google Scholar] [CrossRef]
Parameter | Range | Value |
---|---|---|
colsample_bytree | [0.8, 1.0] | 8.41 × 10−1 |
gamma | [0, 1] | 3.61 × 10−5 |
learning_rate | [0.01, 0.3] | 9.16 × 10−2 |
max_depth | [2, 128] | 102 |
min_child_weight | [0.1, 10] | 3.17 |
reg_alpha | [10−8, 10] | 4.38 × 10−5 |
reg_lambda | [10−8, 10] | 8.60 × 10−7 |
subsample | [0.8, 1.0] | 9.82 × 10−1 |
Parameter | Range | Value |
---|---|---|
bagging_fraction | [0.8, 1.0] | 8.75 × 10−1 |
feature_fraction | [0.8, 1.0] | 9.78 × 10−1 |
lambda_l1 | [10−8, 10] | 4.67 × 10−8 |
lambda_l2 | [10−8, 10] | 6.69 |
learning_rate | [0.01, 0.3] | 2.74 × 10−1 |
max_depth | [2, 128] | 28 |
min_child_weight | [0.1, 10] | 5.98 |
num_leaves | [2, 1024] | 961 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimai, K.; Liu, W.; Maruyama, Y. Prediction and Factor Analysis of Liquefaction Ground Subsidence Based on Machine-Learning Techniques. Appl. Sci. 2024, 14, 2713. https://doi.org/10.3390/app14072713
Karimai K, Liu W, Maruyama Y. Prediction and Factor Analysis of Liquefaction Ground Subsidence Based on Machine-Learning Techniques. Applied Sciences. 2024; 14(7):2713. https://doi.org/10.3390/app14072713
Chicago/Turabian StyleKarimai, Kazuki, Wen Liu, and Yoshihisa Maruyama. 2024. "Prediction and Factor Analysis of Liquefaction Ground Subsidence Based on Machine-Learning Techniques" Applied Sciences 14, no. 7: 2713. https://doi.org/10.3390/app14072713
APA StyleKarimai, K., Liu, W., & Maruyama, Y. (2024). Prediction and Factor Analysis of Liquefaction Ground Subsidence Based on Machine-Learning Techniques. Applied Sciences, 14(7), 2713. https://doi.org/10.3390/app14072713