Factors Affecting the Stability of Loess Landslides: A Review
Abstract
:1. Introduction
2. Relevant Measured Parameters
2.1. Parameters of Landslide Structures
2.2. Resistivity
2.3. The Effect of Water
2.4. Matrix Suction
2.5. Deformation Damage and Monitoring
2.6. Shear Strength
2.7. Pore Water Pressure
2.8. Creep
3. Comprehensive Analysis of Loess Landslides
3.1. Analytical Factors
3.2. Stability Tests
3.3. Analytical Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.J.; Lin, Z.G.; Zhang, M.S. Loess in China and Loess landslides. CJRME 2007, 26, 1297–1312, (In Chinese with English Abstract). [Google Scholar]
- Zhang, K.; Wang, S.; Bao, H.J.; Zhao, X.M. Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China. Nat. Hazards Earth Syst. 2019, 19, 93–105. [Google Scholar] [CrossRef]
- Bruno, F.; Martillier, F. Test of high-resolution seismic reflection and other geophysical techniques on the Boup landslide in the Swiss Alps. Surv. Geophys. 2000, 21, 333–348. [Google Scholar] [CrossRef]
- Derbyshire, E. Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth-Sci. Rev. 2001, 54, 231–260. [Google Scholar] [CrossRef]
- Koestel, J.; Kemna, A.; Javaux, M.; Binley, A.; Vereecken, H. Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR. Water Resour. Res. 2008, 44, 12. [Google Scholar] [CrossRef]
- Samyn, K.; Travelletti, J.; Bitri, A.; Grandjean, G.; Malet, J.P. Characterization of a landslide geometry using 3D seismic refraction traveltime tomography: The La Valette landslide case history. J. Appl. Geophys. 2012, 86, 120–132. [Google Scholar] [CrossRef]
- Szalai, S.; Szokoli, K.; Novák, A.; Tóth, Á.; Metwaly, M.; Prácser, E. Fracture network characterisation of a landslide by electrical resistivity tomography. Nat. Hazards Earth Syst. Sci. Discuss. 2014, 2014, 3965–4010. [Google Scholar] [CrossRef]
- Szalai, S.; Szokoli, K.; Metwaly, M.; Gribovszki, Z.; Prácser, E. Prediction of the location of future rupture surfaces of a slowly moving loess landslide by electrical resistivity tomography. Geophys. Prospect. 2017, 65, 596–616. [Google Scholar] [CrossRef]
- Gelisli, K.; Ersoy, H. Landslide investigation with the use of geophysical methods: A case study in Eastern Turkey. Adv. Biol. Earth Sci. 2017, 2, 52–64. [Google Scholar]
- Holmes, J.; Chambers, J.; Meldrum, P.; Wilkinson, P.; Boyd, J.; Williamson, P.; Huntley, D.; Sattler, K.; Elwood, D.; Sivakumar, V.; et al. Four-dimensional electrical resistivity tomography for continuous, near-real-time monitoring of a landslide affecting transport infrastructure in British Columbia, Canada. Near Surf. Geophys. 2020, 18, 337–351. [Google Scholar] [CrossRef]
- Mreyen, A.S.; Cauchie, L.; Micu, M.; Onaca, A.; Havenith, H.B. Multiple geophysical investigations to characterize massive slope failure deposits: Application to the Balta rockslide, Carpathians. Geophys. J. Int. 2021, 225, 1032–1047. [Google Scholar] [CrossRef]
- Lapenna, V.; Perrone, A. Time-Lapse Electrical Resistivity Tomography (TL-ERT) for Landslide Monitoring: Recent Advances and Future Directions. Appl. Sci. 2022, 12, 1425. [Google Scholar] [CrossRef]
- Wang, G.H.; Sassa, K.; Fukuoka, H.; Tada, T. Experimental study on the shearing behavior of saturated silty soils based on ring-shear tests. J. Geotech. Geoenviron. 2007, 133, 319–333. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, J.B.; Tang, H.M.; Xiang, W. Study on Creep Behavior of Slip Band Soil of Huangtupo Landslide. J. Yangtze River Sci. Res. Inst. 2008, 25, 49–52, (In Chinese with English Abstract). [Google Scholar]
- Xu, J.; Zhou, L.Y.; Hu, K.; Li, Y.F.; Zhou, X.G.; Wang, S.H. Influence of Wet-Dry Cycles on Uniaxial Compression Behavior of Fissured Loess Disturbed by Vibratory Loads. KSCE J. Civ. Eng. 2022, 26, 2139–2152. [Google Scholar] [CrossRef]
- Wen, B.P.; He, L. Influence of lixiviation by irrigation water on residual shear strength of weathered red mudstone in Northwest China: Implication for its role in landslides’ reactivation. Eng. Geol. 2012, 151, 56–63. [Google Scholar] [CrossRef]
- Fan, X.M.; Xu, Q.; Scaringi, G.; Li, S.; Peng, D.L. A chemo-mechanical insight into the failure mechanism of frequently occurred landslides in the Loess Plateau, Gansu Province, China. Eng. Geol. 2017, 228, 337–345. [Google Scholar] [CrossRef]
- Lian, B.Q.; Peng, J.B.; Zhan, H.B.; Huang, Q.B.; Wang, X.G.; Hu, S. Formation mechanism analysis of irrigation-induced retrogressive loess landslides. Catena 2020, 195, 104441. [Google Scholar] [CrossRef]
- Zhu, Z.B.; Wang, X.G.; Zhu, R.S.; Xue, C.; Liu, K. Ring shear test on the shear characteristics of sliding zone soil of loess in Heifangtai, Gansu. J. Arid Land Resour. Environ. 2021, 35, 144–150, (In Chinese with English Abstract). [Google Scholar]
- Chen, D.W.; Wu, Z.J.; Liang, C.; Zhou, H.X. Deformation Characteristics and Disaster-causing Mechanism Analysis of Tongwei Loess Landslide. J. Disaster Prev. Mitig. Eng. 2022, 42, 24–33, (In Chinese with English Abstract). [Google Scholar]
- Budhu, M.; Gobin, R. Slope instability from ground-water seepage. J. Hydraul. Eng. 1996, 122, 415–417. [Google Scholar] [CrossRef]
- Leng, Y.Q.; Peng, J.B.; Wang, Q.Y.; Meng, Z.J.; Huang, W.L. A fluidized landslide occurred in the Loess Plateau: A study on loess landslide in South Jingyang tableland. Eng. Geol. 2018, 236, 129–136. [Google Scholar] [CrossRef]
- Peng, D.L.; Xu, Q.; Liu, F.Z.; He, Y.S.; Zhang, S.; Qi, X.; Zhao, K.Y.; Zhang, X.L. Distribution and failure modes of the landslides in Heitai terrace, China. Eng. Geol. 2018, 236, 97–110. [Google Scholar] [CrossRef]
- Zaalishvili, V.; Chotchaev, K.; Melkov, D.; Burdzieva, O.; Dzeranov, B.; Kanukov, A.; Archireeva, I.; Gabaraev, A.; Dzobelova, L. Geodetic, geophysical and geographical methods in landslide investigation: Luar case study. E3S Web Conf. 2020, 164, 01014. [Google Scholar] [CrossRef]
- Huang, G.W.; Du, Y.; Meng, L.M.; Huang, G.W.; Wang, J.; Han, J.Q. Application Performance Analysis of Three GNSS Precise Positioning Technology in Landslide Monitoring. Lect. Notes Electr. Eng. 2017, 437, 137–148. [Google Scholar] [CrossRef]
- Zhu, Y.R.; Qiu, H.J.; Cui, P.; Liu, Z.J.; Ye, B.F.; Yang, D.D.; Kamp, U. Early detection of potential landslides along high-speed railway lines: A pressing issue. Earth Surf. Proc. Land. 2023, 48, 3302–3314. [Google Scholar] [CrossRef]
- Gao, G.R. Microstructure of Loess Soil in China Relative to Geographic and Geologic Environment. Acta Geol. Sin. 1984, 3, 265–272, (In Chinese with English Abstract). [Google Scholar]
- Jiang, Y.; Chen, W.W.; Wang, G.H.; Sun, G.P.; Zhang, F.Y. Influence of initial dry density and water content on the soil-water characteristic curve and suction stress of a reconstituted loess soil. Bull. Eng. Geol. Environ. 2017, 76, 1085–1095. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.C.; Pei, X.J.; Wang, S.Y.; Huang, R.Q.; Xu, Q.; Wang, Z.L. Model test study on the hydrological mechanisms and early warning thresholds for loess fill slope failure induced by rainfall. Eng. Geol. 2019, 258, 105135. [Google Scholar] [CrossRef]
- Sun, P.; Wang, H.J.; Wang, G.; Li, R.J.; Zhang, Z.; Huo, X.T. Field model experiments and numerical analysis of rainfall-induced shallow loess landslides. Eng. Geol. 2021, 295, 106411. [Google Scholar] [CrossRef]
- Schrott, L.; Sass, O. Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies. Geomorphology 2008, 93, 55–73. [Google Scholar] [CrossRef]
- Li, F.; Zhou, H.F.; Ge, H. Electrical characteristics of different types of landslide bodies investigated by high-density electrical method. Geophys. Geochem. Explor. 2019, 43, 215–221, (In Chinese with English Abstract). [Google Scholar]
- Ackerson, J.P.; Morgan, C.L.S.; Everett, M.E.; McInnes, K.J. The Role of Water Content in Electrical Resistivity Tomography of a Vertisol. Soil Sci. Soc. Am. J. 2014, 78, 1552–1562. [Google Scholar] [CrossRef]
- Dietrich, S.; Weinzettel, P.; Varni, M. Infiltration and Drainage Analysis in a Heterogeneous Soil by Electrical Resistivity Tomography. Soil Sci. Soc. Am. J. 2014, 78, 1153–1167. [Google Scholar] [CrossRef]
- Uhlemann, S.; Hagedorn, S.; Dashwood, B.; Maurer, H.; Gunn, D.; Dijkstra, T.; Chambers, J. Landslide characterization using P- and S-wave seismic refraction tomography—The importance of elastic moduli. J. Appl. Geophys. 2016, 134, 64–76. [Google Scholar] [CrossRef]
- Perrone, A.; Lapenna, V.; Piscitelli, S. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Sci. Rev. 2014, 135, 65–82. [Google Scholar] [CrossRef]
- Zhuang, J.Q.; Peng, J.B.; Zhu, Y.; Leng, Y.Q.; Zhu, X.H.; Huang, W.L. The internal erosion process and effects of undisturbed loess due to water infiltration. Landslides 2021, 18, 629–638. [Google Scholar] [CrossRef]
- Sun, P.; Peng, J.B.; Chen, L.W.; Lu, Q.Z.; Igwe, O. An experimental study of the mechanical characteristics of fractured loess in western China. Bull. Eng. Geol. Environ. 2016, 75, 1639–1647. [Google Scholar] [CrossRef]
- Li, Y.; Mao, J.; Xiang, X.; Mo, P. Factors influencing development of cracking–sliding failures of loess across the eastern Huangtu Plateau of China. Nat. Hazards Earth Syst. Sci. 2018, 18, 1223–1231. [Google Scholar] [CrossRef]
- Xie, W.L.; Guo, Q.Y.; Wu, J.Y.; Li, P.; Yang, H.; Zhang, M.S. Analysis of loess landslide mechanism and numerical simulation stabilization on the Loess Plateau in Central China. Nat. Hazards 2021, 106, 805–827. [Google Scholar] [CrossRef]
- Göktürkler, G.; Balkaya, C.; Erhan, Z. Geophysical investigation of a landslide: The Altindag landslide site, Izmir (western Turkey). J. Appl. Geophys. 2008, 65, 84–96. [Google Scholar] [CrossRef]
- Gance, J.; Grandjean, G.; Samyn, K.; Malet, J.P. Quasi-Newton inversion of seismic first arrivals using source finite bandwidth assumption: Application to subsurface characterization of landslides. J. Appl. Geophys. 2012, 87, 94–106. [Google Scholar] [CrossRef]
- Capizzi, P.; Martorana, R. Integration of constrained electrical and seismic tomographies to study the landslide affecting the cathedral of Agrigento. J. Geophys. Eng. 2014, 11, 045009. [Google Scholar] [CrossRef]
- Sauvin, G.; Lecomte, I.; Bazin, S.; Hansen, L.; Vanneste, M.; L’Heureux, J.S. On the integrated use of geophysics for quick-clay mapping: The Hvittingfoss case study, Norway. J. Appl. Geophys. 2014, 106, 1–13. [Google Scholar] [CrossRef]
- Bottari, C.; Albano, M.; Capizzi, P.; D’Alessandro, A.; Doumaz, F.; Martorana, R.; Moro, M.; Saroli, M. Recognition of Earthquake-Induced Damage in the Abakainon Necropolis (NE Sicily): Results from Geomorphological, Geophysical and Numerical Analyses. Pure Appl. Geophys. 2018, 175, 133–148. [Google Scholar] [CrossRef]
- Mezerreg, N.E.; Kessasra, F.; Bouftouha, Y.; Bouabdallah, H.; Bollot, N.; Baghdad, A.; Bougdal, R. Integrated geotechnical and geophysical investigations in a landslide site at Jijel, Algeria. J. Afr. Earth Sci. 2019, 160, 103633. [Google Scholar] [CrossRef]
- Akingboye, A.S.; Ogunyele, A.C. Insight into seismic refraction and electrical resistivity tomography techniques in subsurface investigations. Rud-Geol-Naft. Zb. 2019, 34, 93–111. [Google Scholar] [CrossRef]
- Imani, P.; Tian, G.; Hadiloo, S.; Abd El-Raouf, A. Application of combined electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods to investigate Xiaoshan District landslide site: Hangzhou, China. J. Appl. Geophys. 2021, 184, 104236. [Google Scholar] [CrossRef]
- Marciniak, A.; Kowalczyk, S.; Gontar, T.; Owoc, B.; Nawrot, A.; Luks, B.; Cader, J.; Majdanski, M. Integrated geophysical imaging of a mountain landslide—A case study from the Outer Carpathians, Poland. J. Appl. Geophys. 2021, 191, 104364. [Google Scholar] [CrossRef]
- Wrobel, M.; Stan-Kleczek, I.; Marciniak, A.; Majdanski, M.; Kowalczyk, S.; Nawrot, A.; Cader, J. Integrated Geophysical Imaging and Remote Sensing for Enhancing Geological Interpretation of Landslides with Uncertainty Estimation-A Case Study from Cisiec, Poland. Remote Sens. 2023, 15, 238. [Google Scholar] [CrossRef]
- Aguzzoli, A.; Arosio, D.; Mulas, M.; Ciccarese, G.; Bayer, B.; Winkler, G.; Ronchetti, F. Multidisciplinary non-invasive investigations to develop a hydrogeological conceptual model supporting slope kinematics at Fontana Cornia landslide, Northern Apennines, Italy. Environ. Earth Sci. 2022, 81, 471. [Google Scholar] [CrossRef]
- Himi, M.; Anton, M.; Sendrós, A.; Abancó, C.; Ercoli, M.; Lovera, R.; Deidda, G.P.; Urruela, A.; Rivero, L.; Casas, A. Application of Resistivity and Seismic Refraction Tomography for Landslide Stability Assessment in Vallcebre, Spanish Pyrenees. Remote Sens. 2022, 14, 6333. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Wu, S.; Tang, H.; Liang, C. The role of seismic triggering in a deep-seated mudstone landslide, China: Historical reconstruction and mechanism analysis. Eng. Geol. 2017, 226, 122–135. [Google Scholar] [CrossRef]
- Wang, L.-M.; Wu, Z.-J.; Xia, K. Effects of site conditions on earthquake ground motion and their applications in seismic design in loess region. J. Mt. Sci. 2017, 14, 1185–1193. [Google Scholar] [CrossRef]
- Xu, Q.; Li, H.J.; He, Y.S.; Liu, F.Z.; Peng, D.L. Comparison of data-driven models of loess landslide runout distance estimation. Bull. Eng. Geol. Environ. 2019, 78, 1281–1294. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Tham, L.G.; Yan, W.M.; Dai, F.C.; Xu, L. Laboratory study on soil behavior in loess slope subjected to infiltration. Eng. Geol. 2014, 183, 31–38. [Google Scholar] [CrossRef]
- Zhuang, J.Q.; Peng, J.B.; Wang, G.H.; Javed, I.; Wang, Y.; Li, W. Distribution and characteristics of landslide in Loess Plateau: A case study in Shaanxi province. Eng. Geol. 2018, 236, 89–96. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, S.; Chang, S.L.; Liu, B.; Liu, J.; Long, J.H. Geophysical Interpretation of a Subsurface Landslide in the Southern Qinshui Basin. J. Environ. Eng. Geoph. 2019, 24, 433–449. [Google Scholar] [CrossRef]
- Liu, G.H.; Wang, Z.Y.; Huang, J.P. Research on electrical resistivity feature of soil and it’s application. Acta Geotech. 2004, 26, 83–87, (In Chinese with English Abstract). [Google Scholar]
- Zhang, G.Y.; Liu, S.M.; Sun, H.Z. A Study of Factors Influencing Soil Resistivity in Tarim Region. Acta Pedol. Sin. 2006, 43, 160–163, (In Chinese with English Abstract). [Google Scholar]
- Long, J.H.; Li, T.L.; Zhang, Z. Experimental Study on Identification of Sliding Zone in Loess Slopes with Electrical Resistivity Method. Chin. J. Eng. Geol. 2007, 15, 268–272, (In Chinese with English Abstract). [Google Scholar]
- Zha, F.S.; Liu, S.Y.; Du, Y.J.; Cui, K.R. Characteristics of electrical resistivity of compacted loess. Rock. Soil. Mech. 2011, 32, 155–158, (In Chinese with English Abstract). [Google Scholar]
- Song, J.; Li, S.C.; Liu, B.; Xu, X.J.; Wang, C.W.; Nie, L.C. Quantitative assessment method of unsaturated soil compaction degree based on resistivity property. J. Chang. Univ. 2015, 35, 33–41, (In Chinese with English Abstract). [Google Scholar]
- Liu, H.; Hu, W.L.; Wang, T.X.; Niu, Z.L.; Gu, H.Q.; Hu, P.F. Experimental research on the resistivity characteristics of contaminated remolded Q3 loess by water content and com-paction degree. J. Xi’an Univ. Arch. Tech. 2021, 53, 337–343, (In Chinese with English Abstract). [Google Scholar]
- Garré, S.; Günther, T.; Diels, J.; Vanderborght, J. Evaluating Experimental Design of ERT for Soil Moisture Monitoring in Contour Hedgerow Intercropping Systems. Vadose Zone J. 2012, 11, vzj2011.0186. [Google Scholar] [CrossRef]
- Zhang, S.B.; Zhu, C.H.; Yuan, J.G. Laboratory model tests on moisture migration in remolded loess under rainfall conditions. J. Hydraul. Eng. 2019, 50, 621–630, (In Chinese with English Abstract). [Google Scholar]
- Sun, B.; Gu, T.F.; Kong, J.X.; Zhang, F.C.; Sun, J.X. Experimental Research on Relationship between Resistivity and Moisture Content of Unsaturated Loess. Northwest Geol. 2020, 53, 216–222, (In Chinese with English Abstract). [Google Scholar]
- Duan, Z.; Cheng, W.C.; Peng, J.B.; Wang, Q.Y.; Chen, W. Investigation into the triggering mechanism of loess landslides in the south Jingyang platform, Shaanxi province. Bull. Eng. Geol. Environ. 2019, 78, 4919–4930. [Google Scholar] [CrossRef]
- Yan, R.X.; Peng, J.B.; Huang, Q.B.; Chen, L.J.; Kang, C.Y.; Shen, Y.J. Triggering Influence of Seasonal Agricultural Irrigation on Shallow Loess Landslides on the South Jingyang Plateau, China. Water 2019, 11, 1474. [Google Scholar] [CrossRef]
- Gu, T.F.; Zhang, M.S.; Wang, J.D.; Wang, C.X.; Xu, Y.J.; Wang, X. The effect of irrigation on slope stability in the Heifangtai Platform, Gansu Province, China. Eng. Geol. 2019, 248, 346–356. [Google Scholar] [CrossRef]
- Gu, T.F.; Sun, P.P.; Wang, J.D.; Lin, H.; Xu, Y.J.; Kong, J.X.; Sun, B. An Experimental and Numerical Study of Landslides Triggered by Agricultural Irrigation in Northwestern China. Adv. Civ. Eng. 2020, 2020, 8850381. [Google Scholar] [CrossRef]
- Guo, F.Y.; Zhang, L.S.; Wang, X.; Song, X.L. Analysis on evolution process and movement mechanism of the Luojiapo landslide in Heifangtai, Gansu Province. Chin. J. Geol. Hazards Control 2023, 34, 11–20, (In Chinese with English Abstract). [Google Scholar]
- Chen, G.; Meng, X.M.; Qiao, L.; Zhang, Y.; Wang, S.Y. Response of a loess landslide to rainfall: Observations from a field artificial rainfall experiment in Bailong River Basin, China. Landslides 2018, 15, 895–911. [Google Scholar] [CrossRef]
- Hou, X.K.; Vanapalli, S.K.; Li, T.L. Water infiltration characteristics in loess associated with irrigation activities and its influence on the slope stability in loess highland, China. Eng. Geol. 2018, 234, 27–37. [Google Scholar] [CrossRef]
- Zeng, R.Q.; Meng, X.M.; Zhang, F.Y.; Wang, S.Y.; Cui, Z.J.; Zhang, M.S.; Zhang, Y.; Chen, G. Characterizing hydrological processes on loess slopes using electrical resistivity tomography—A case study of the Heifangtai Terrace, Northwest China. J. Hydrol. 2016, 541, 742–753. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, B.; Zhang, J.F. Application of Multi-electrode Resistivity Method in Groundwater Level Detection in Loess Tableland of Jingyang Area, Shaanxi, China. JESE 2020, 42, 791–800, (In Chinese with English Abstract). [Google Scholar]
- Duan, G.X.; Jia, X.X.; Bai, X.; Liu, C.G.; Wei, X.R. Variation of Soil Water over Slopes and Retained Lands in Loess Region: Investigated Using Electrical Resistivity Tomography. J. Irrig. Drain. 2023, 42, 104–111, (In Chinese with English Abstract). [Google Scholar]
- Bian, S.Q.; Yang, Y.P.; Ma, J.H.; Chen, G.; Zeng, R.Q.; Zhang, Y.; Meng, X.M. Two-Dimensional Imaging Study of Internal Moisture in Loess Slope: A Case Study of the Luojiapo Landslide in Hei-fangtai Terrace. J. Eng. Geol. 2020, 28, 840–851, (In Chinese with English Abstract). [Google Scholar]
- Wu, L.Z.; Zhou, Y.; Sun, P.; Shi, J.S.; Liu, G.G.; Bai, L.Y. Laboratory characterization of rainfall-induced loess slope failure. Catena 2017, 150, 1–8. [Google Scholar] [CrossRef]
- Wang, X.G.; Wang, J.D.; Zhan, H.B.; Li, P.; Qiu, H.J.; Hu, S. Moisture content effect on the creep behavior of loess for the catastrophic Baqiao landslide. Catena 2020, 187, 104371. [Google Scholar] [CrossRef]
- Robinson, D.A.; Lebron, I.; Kocar, B.; Phan, K.; Sampson, M.; Crook, N.; Fendorf, S. Time-lapse geophysical imaging of soil moisture dynamics in tropical deltaic soils: An aid to interpreting hydrological and geochemical processes. Water Resour. Res. 2009, 45, 4. [Google Scholar] [CrossRef]
- Wehrer, M.; Slater, L.D. Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions. Water Resour. Res. 2015, 51, 97–124. [Google Scholar] [CrossRef]
- Senkaya, M.; Babacan, A.E.; Karsli, H.; San, B.T. Origins of diverse present displacements in a paleo-landslide area (Isiklar, Trabzon, northeast Turkey). Environ. Earth Sci. 2022, 81, 245. [Google Scholar] [CrossRef]
- Kang, C.; Zhang, F.Y.; Pan, F.Z.; Peng, J.B.; Wu, W.J. Characteristics and dynamic runout analyses of 1983 Saleshan landslide. Eng. Geol. 2018, 243, 181–195. [Google Scholar] [CrossRef]
- Li, S.H.; Li, C.; Yao, D.; Liu, C.C. Interdisciplinary asperity theory to analyze nonlinear motion of loess landslides with weak sliding interface. Landslides 2020, 17, 2957–2965. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Gurung, D.R.; Liu, R.K.; Murthy, M.S.R.; Su, F.H. Abe Barek landslide and landslide susceptibility assessment in Badakhshan Province, Afghanistan. Landslides 2015, 12, 597–609. [Google Scholar] [CrossRef]
- Putro, S.T.J.; Arif, N.; Sarastika, T. Land surface temperature (LST) and soil moisture index (SMI) to identify slope stability. IOP Conf. Ser. Earth Environ. Sci. 2022, 986, 012022. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, S.C.; Zhang, Q.; Liu, Q.; Ma, Z.M.; Wang, T.; Tian, J.; Li, X.R. Research of Deformation and Soil Moisture in Loess Landslide Simultaneous Retrieved with Ground-Based GNSS. Remote Sens. 2022, 14, 5687. [Google Scholar] [CrossRef]
- Li, J.; Cao, F. Characteristics Analysis of Collapsible Loess Structure in Sanmenxia Area. Henan Sci. Technol. 2022, 15, 107–110, (In Chinese with English Abstract). [Google Scholar]
- Pu, X.W.; Wang, L.M.; Wang, P.; Chai, S.F. Study of shaking table test of seismic subsidence loess landslides induced by the coupling effect of earthquakes and rainfall. Nat. Hazards 2020, 103, 923–945. [Google Scholar] [CrossRef]
- Zhao, L.H.; Zuo, S.; Lin, Y.L.; Li, L.; Zhang, Y.B. Reliability back analysis of shear strength parameters of landslide with three-dimensional upper bound limit analysis theory. Landslides 2016, 13, 711–724. [Google Scholar] [CrossRef]
- Pei, X.J.; Zhang, X.C.; Guo, B.; Wang, G.H.; Zhang, F.Y. Experimental case study of seismically induced loess liquefaction and landslide. Eng. Geol. 2017, 223, 23–30. [Google Scholar] [CrossRef]
- Whiteley, J.S.; Chambers, J.E.; Uhlemann, S.; Wilkinson, P.B.; Kendall, J.M. Geophysical Monitoring of Moisture-Induced Landslides: A Review. Rev. Geophys. 2019, 57, 106–145. [Google Scholar] [CrossRef]
- Chen, W.W.; Song, B.H.; Wu, W.J.; Sun, Y.F.; Song, Y.P. Direct and reversal shear behaviors of three kinds of slip zone soil in the Northwest of China. Bull. Eng. Geol. Environ. 2021, 80, 3939–3952. [Google Scholar] [CrossRef]
- Leng, X.L.; Wang, C.; Zhang, J.; Sheng, Q.; Cao, S.L.; Chen, J. Deformation Development Mechanism in a Loess Slope with Seepage Fissures Subjected to Rainfall and Traffic Load. Front. Earth Sci. 2021, 9, 769257. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Lu, Y.D.; Li, X.; Lu, Y.C.; Pan, W.S. Microscopic structure changes of Malan loess after humidification in South Jingyang Plateau, China. Environ. Earth Sci. 2019, 78, 287. [Google Scholar] [CrossRef]
- Wang, X.G.; Liu, K.; Wang, Y.L.; Zhang, P.D.; Shi, W.; Luo, L. An experimental study of the creep characteristics of loess landslide sliding zone soil with different water content. Hydrogeol. Eng. Geol. 2022, 49, 137–143, (In Chinese with English Abstract). [Google Scholar]
- Pan, L.; Zhang, Y.F.; Chen, J.Z.; Zhang, Y.H. Research on the relationship between loess macro-structure and collapsibility coefficient. J. Water Resour. Water Eng. 2018, 29, 220–224, (In Chinese with English Abstract). [Google Scholar]
- Liu, L.; Yin, K.L.; Wang, J.J.; Zhang, J.; Huang, F.M. Dynamic evaluation of regional landslide hazard due to rainfall: A case study in Wanzhou central district, Three Gorges Reservoir. Chin. J. Rock Mech. Eng. 2016, 35, 558–569, (In Chinese with English Abstract). [Google Scholar]
- Dijkstra, T.A. Geotechnical thresholds in the Lanzhou loess of China. Quatern Int. 2001, 76–77, 21–28. [Google Scholar] [CrossRef]
- Gu, T.F.; Wang, J.D.; Wang, N.Q. Geological features of loess landslide at Lüliang airport and its 3D stability analysis. Rock Soil Mech. 2013, 34, 2009–2016, (In Chinese with English Abstract). [Google Scholar]
- Zhou, Y. Rainfall-Induced Landslide Susceptibility and Dynamic Hazard Evaluation Study in Loess Hilly Region—A Case Study of Qin’an County, Gansu Province. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2018. (In Chinese with English Abstract). [Google Scholar]
Analytical Factors | Measured Parameters | Methods | Application | References |
---|---|---|---|---|
thickness, volume, open stacking structure | bulk properties, subsidence, mass movements, erosion | analysis of data and artifacts | survey (loess) | [4] |
fracture system | resistivity | ERT | [7] | |
depth, volume, angle | rainfall, coefficient of friction, static liquefaction | field investigation, geotechnical in situ testing and indoor testing | [56] | |
internal structure | water infiltration, physical state | penetration test, undrained triaxial test, particle analysis, scanning electron microscope test | [37] | |
structural strength | moisture content | double line method humidification test | [89] | |
landslide thickness, fracture, stratification, porosity, failure surface, saturation | seismic wave velocity, resistivity, isotope, displacement and hydrogeological parameters | ERT, SRT, mass spectrometer, Liquid Water Isotope Analyser | survey and monitor (non-loess) | [41,42,45,48,51] |
subsoil complexity, sliding surface, fractures, water flow within formation | seismic wave velocity, resistivity | SRT, ERT, HVSR and MASW | survey (non-loess) | [43,46] |
spatial orientation of rock layers | seismic wave velocity, permittivity | SRT, GPR, geotechnical surveys | [44] | |
underground geological conditions | seismic wave velocity, Bouguer gravity anomaly | SRT, ERT, Bouguer gravity anomaly modeling | [47] | |
landslide surfaces, paleochannels | seismic wave velocity, resistivity | SRT, ERT, SSI | [58] | |
structure of landslide deposition | s-wave velocity | HVSR | [11] | |
underground images, depth of landslide surfaces | seismic wave velocity, resistivity | ERT, MASW, SRT | [49] | |
spatial variability, surface area of landslides | seismic wave velocity, resistivity | ERT, MASW, SRT, and Digital Terrain Models (DTMs) | [50] | |
landslide geometry | seismic wave velocity, resistivity, lithology logging data | SRT, ERT, and borehole data | [52] | |
resistivity | slip band, compaction, saturation, resistivity, temperature, pollution concentration, irrigation and rainfall | WDJD-1 multi-purpose numerical direct-current electricity meter modeled, boreholes, ESEU-1 resistivity equipment, voltammetry test sets, ERT | survey (loess) | [61,62,64,75] |
electrical characteristics, water content, salinity, gravel content, solidity, compaction | ERT, boreholes, resistivity tests, high-resistance measuring instruments | survey (non-loess) | [32,33,59,60,63] | |
irrigation | shear force, cracks, water content, infiltration of water, groundwater level | triaxial shear test, field measurements, static liquefaction test | survey and monitor (loess) | [22,68,69,70] |
rainfall | water content, pore water pressure, cracks, landslide morphologic features, stratigraphic structure, thickness of the slide, groundwater distribution | artificial rainfall tests, model tests, moisture sensors, tensiometers, pressure sensors, drone aerial surveys, ERT | survey and monitor (loess) | [20,29,30,73] |
spatial and temporal evolution | matric suction, moisture content, pore water pressure, deformation of the slope, resistivity, movement and changes of particles | physical model test, coupled monitoring system, triaxial test, four-phase electrode method, boreholes, ERT, scanning electron microscopy | survey and monitor (loess) | [29,65,67,70,77,96] |
top-soil moisture, geometry of the landslide, moisture content, elastic moduli, shear strength | TL-ERT, ERT, field experiments, lab simulations, ERT, time-lapse methods, limit analysis | survey and monitor (non-loess) | [12,82,91,93] | |
matrix suction | dry density, moisture content, rates of desorption, pore water pressure, cracks, rainfall intensities, saturation, irrigation infiltration, groundwater level, creep rate, stratum lithology, rainfall | analysis experiments, failure mode early warning threshold model, field experiments, numerical simulation, Transient Release and Imbibition Method, triaxial creep tests, steady-state creep rate slope method (SCRSM) | survey and monitor (loess) | [28,29,30,70,80] |
shear strength parameters | back analysis | survey (non-loess) | [91] | |
collapsibility, granular frame structure | microstructure of loess, slide width, slide thickness, slide volume, vertical drop, slide length, dip direction angle, slope angle, coefficient of collapsibility | electron microscope observation, predictive modeling, distribution fitting, field investigation and monitoring, geotechnical test | survey (loess) | [27,43,98] |
shear strength | engineering properties, fissure angle, degree of saturation, moisture content, residual strength, macropores, deep joints, angle between slope and bedrock, deepness, volume, run-out distance, apparent friction angle, cohesion, angle of internal friction, deformation modulus | soil mechanics, wet–dry cycles compression tests, chemical analyses, oedometer, undrained triaxial shear tests, ring shear tests, microstructure observation, aerial images and Digital Elevation Model analysis, geotechnical tests, numerical method | survey (loess) | [1,15,17,18,19,22,23,38,42,92,95] |
pore water pressure, residual shear strength, interparticle force, shear strength parameters, residual friction angle | shear test, weathered red mudstone test, back analysis, upper bound theory of limit analysis | survey (non-loess) | [13,16,91,94] | |
pore water pressure | tensile cracks, volumetric moisture content, matric suction | model test, early warning threshold model, field experiments, numerical simulation, soil moisture sensors, tensiometers, earth pressure cells | survey and monitor (loess) | [29,30] |
shear strength | shear tests | survey (non-loess) | [13] | |
creep | long term strength, peak strength, moisture content, stratum lithology, rainfall | creep model tests, triaxial creep tests, steady-state creep rate slope method (SCRSM) | survey (loess) | [14,91,97] |
line-of-sight deformation velocity | hot spot analysis, optical satellite image analysis | survey and monitor (non-loess) | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Zeng, Z.; Yan, J. Factors Affecting the Stability of Loess Landslides: A Review. Appl. Sci. 2024, 14, 2735. https://doi.org/10.3390/app14072735
Wei L, Zeng Z, Yan J. Factors Affecting the Stability of Loess Landslides: A Review. Applied Sciences. 2024; 14(7):2735. https://doi.org/10.3390/app14072735
Chicago/Turabian StyleWei, Liucheng, Zhaofa Zeng, and Jiahe Yan. 2024. "Factors Affecting the Stability of Loess Landslides: A Review" Applied Sciences 14, no. 7: 2735. https://doi.org/10.3390/app14072735
APA StyleWei, L., Zeng, Z., & Yan, J. (2024). Factors Affecting the Stability of Loess Landslides: A Review. Applied Sciences, 14(7), 2735. https://doi.org/10.3390/app14072735