Acute Effect of Velocity-Based Resistance Training on Subsequent Endurance Running Performance: Volume and Intensity Relevance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Design
2.3. Procedures
2.3.1. VBT Protocols
2.3.2. RTT Protocol
2.4. Statistical Analyses
3. Results
3.1. Descriptive Characteristics of the VBT Protocols
3.2. MAS Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beattie, K.; Kenny, I.C.; Lyons, M.; Carson, B.P. The effect of strength training on performance in endurance athletes. Sports Med. 2014, 44, 845–865. [Google Scholar] [CrossRef] [PubMed]
- Blagrove, R.C.; Howatson, G.; Hayes, P.R. Effects of strength training on the physiological determinants of middle- and long-distance running performance: A systematic review. Sports Med. 2018, 48, 1117–1149. [Google Scholar] [CrossRef] [PubMed]
- Jung, A.P. The impact of resistance training on distance running performance. Sports Med. 2003, 33, 539–552. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Mujika, I. Optimizing strength training for running and cycling endurance performance: A review. Scand. J. Med. Sci. Sports 2014, 24, 603–612. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Andrade, D.C.; García-Pinillos, F.; Negra, Y.; Boullosa, D.; Moran, J. Effects of jump training on physical fitness and athletic performance in endurance runners: A meta-analysis. J. Sports Sci. 2021, 39, 2030–2050. [Google Scholar] [CrossRef]
- Aagaard, P.; Andersen, J.L. Effects of strength training on endurance capacity in top-level endurance athletes. Scand. J. Med. Sci. Sports 2010, 20, 39–47. [Google Scholar] [CrossRef]
- Alcaraz-Ibañez, M.; Rodríguez-Pérez, M. Effects of resistance training on performance in previously trained endurance runners: A systematic review. J. Sports Sci. 2018, 36, 613–629. [Google Scholar] [CrossRef] [PubMed]
- Doma, K.; Deakin, G.B.; Bentley, D.J. Implications of impaired endurance performance following single bouts of resistance training: An alternate concurrent training perspective. Sports Med. 2017, 47, 2187–2200. [Google Scholar] [CrossRef]
- Doma, K.; Deakin, G.B.; Schumann, M.; Bentley, D.J. Training considerations for optimising endurance development: An alternate concurrent training perspective. Sports Med. 2019, 49, 669–682. [Google Scholar] [CrossRef]
- Doma, K.; Deakin, G.B. The acute effects intensity and volume of strength training on running performance. Eur. J. Sport Sci. 2014, 14, 107–115. [Google Scholar] [CrossRef]
- Nevin, J. Autoregulated resistance training: Does velocity-based training represent the future? Strength Cond. J. 2019, 41, 34–39. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Nájera-Ferrer, P.; Pérez-Caballero, C.; González-Badillo, J.J.; Pareja-Blanco, F. Effects of exercise sequence and velocity loss threshold during resistance training on following endurance and strength performance during concurrent training. Int. J. Sports Physiol. Perform. 2021, 16, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, M.; Rodríguez-Rosell, D.; Díaz-Cueli, D.; Pareja-Blanco, F.; González-Badillo, J.J. Effects of velocity loss threshold within resistance training during concurrent training on endurance and strength performance. Int. J. Sport Physiol. Perform. 2021, 16, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Quidel-Catrilelbún, M.E.L.; Ruiz-Alias, S.A.; García-Pinillos, F.; Ramirez-Campillo, R.; Pérez-Castilla, A. Acute effect of different velocity-based training protocols on 2000-meter rowing ergometer performance. J. Strength Cond. Res. 2024, 38, e8–e15. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Walker, S.; Häkkinen, K. Validity of using velocity to estimate intensity in resistance exercises in men and women. Int. J. Sports Med. 2020, 41, 1047–1055. [Google Scholar] [CrossRef]
- Rissanen, J.; Walker, S.; Pareja-Blanco, F.; Häkkinen, K. Velocity-based resistance training: Do women need greater velocity loss to maximize adaptations? Eur. J. Appl. Physiol. 2022, 122, 1269–1280. [Google Scholar] [CrossRef]
- Walker, S.; Häkkinen, K.; Virtanen, R.; Mane, S.; Bachero-Mena, B.; Pareja-Blanco, F. Acute neuromuscular and hormonal responses to 20 versus 40% velocity loss in males and females before and after 8 weeks of velocity-loss resistance training. Exp. Physiol. 2022, 107, 1046–1060. [Google Scholar] [CrossRef]
- Taipale, R.S.; Schumann, M.; Mikkola, J.; Nyman, K.; Kyröläinen, H.; Nummela, A.; Häkkinen, K. Acute neuromuscular and metabolic responses to combined strength and endurance loadings: The “order effect” in recreationally endurance trained runners. J. Sports Sci. 2014, 32, 1155–1164. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Cerezuela-Espejo, V.; Morán-Navarro, R.; Martínez-Cava, A.; Conesa, E.; Courel-Ibáñez, J. A new short track test to estimate the VO2max and maximal aerobic speed in well-trained runners. J. Strength Cond. Res. 2019, 33, 1216–1221. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; García-Ramos, A.; Padial, P.; Morales-Artacho, A.J.; Feriche, B. Load-velocity relationship in variations of the half-squat exercise. J. Strength Cond. Res. 2020, 34, 1024–1031. [Google Scholar] [CrossRef]
- Courel-Ibáñez, J.; Martínez-Cava, A.; Morán-Navarro, R.; Escribano-Peñas, P.; Chavarren-Cabrero, J.; González-Badillo, J.J.; Pallarés, J.G. Reproducibility and repeatability of five different technologies for bar velocity measurement in resistance training. Ann. Biomed. Eng. 2019, 47, 1523–1538. [Google Scholar] [CrossRef]
- Midgley, A.W.; McNaughton, L.R.; Polman, R.; Marchant, D. Criteria for determination of maximal oxygen uptake. Sports Med. 2007, 37, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Weakley, J.J.; Wilson, K.M.; Till, K.; Read, D.B.; Darrall-Jones, J.; Roe, G.A.B.; Phibbs, P.J.; Jones, B. Visual feedback attenuates mean concentric barbell velocity loss and improves motivation, competitiveness, and perceived workload in male adolescent athletes. J. Strength Cond. Res. 2019, 33, 2420–2425. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Castaño-Zambudio, A.; Cuadrado-Peñafiel, V.; González-Hernández, J.M.; Capelo-Ramírez, F.; Martínez-Aranda, L.M.; González-Badillo, J.J. Differences between adjusted vs. non-adjusted loads in velocity-based training: Consequences for strength training control and programming. PeerJ 2021, 9, e10942. [Google Scholar] [CrossRef]
- Banyard, H.G.; Nosaka, K.; Vernon, A.D.; Haff, G.G. The reliability of individualized load–velocity profiles. Int. J. Sports Physiol. Perform. 2018, 13, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Sánchez-Medina, L.; Mora-Custodio, R.; González-Badillo, J.J. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J. Strength Cond. Res. 2020, 34, 2537–2547. [Google Scholar] [CrossRef] [PubMed]
- Doma, K.; Bede Deakin, G. The effects of combined strength and endurance training on running performance the following day. Int. J. Sport Health Sci. 2013, 11, 1–9. [Google Scholar] [CrossRef]
- Doma, K.; Deakin, G. The acute effect of concurrent training on running performance over 6 days. Res. Q. Exerc. Sport 2015, 86, 387–396. [Google Scholar] [CrossRef]
- Nuzzo, J.L. Narrative review of sex differences in muscle strength, endurance, activation, size, fiber type, and strength training participation rates, preferences, motivations, injuries, and neuromuscular adaptations. J. Strength Cond. Res. 2022, 37, 494–536. [Google Scholar] [CrossRef] [PubMed]
- Skurvydas, A.; Brazaitis, M.; Venckūnas, T.; Kamandulis, S.; Stanislovaitis, A.; Zuoza, A. The effect of sports specialization on musculus quadriceps function after exercise-induced muscle damage. Appl. Physiol. Nutr. Metab. 2011, 36, 873–880. [Google Scholar] [CrossRef]
- Doma, K.; Schumann, M.; Sinclair, W.H.; Leicht, A.S.; Deakin, G.B.; Häkkinen, K. The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response. Eur. J. Appl. Physiol. 2015, 115, 1789–1799. [Google Scholar] [CrossRef]
- Robineau, J.; Babault, N.; Piscione, J.; Lacome, M.; Bigard, A.X. Specific training effects of concurrent aerobic and strength exercises depend on recovery duration. J. Strength Cond. Res. 2016, 30, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Nugent, F.J.; Flanagan, E.P.; Darragh, I.; Daly, L.; Warrington, G.D. The effects of high-repetition strength training on performance in competitive endurance athletes. J. Strength Cond. Res. 2023, 37, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
Variable | Set Number | Sex | VBT60–10 | VBT60–30 | VBT80–10 | VBT80–30 | ANOVA | |
---|---|---|---|---|---|---|---|---|
Main Effects | Interactions | |||||||
Number of repetitions | 1 | Men | 9.5 ± 4.0 | 18.6 ± 5.4 | 5.9 ± 1.2 | 9.4 ± 3.6 | Pr: F(3,54) = 49.6; p ˂ 0.001 Set: F(2,36) = 0.9; p = 0.426 Sex: F(1,19) = 0.1; p = 0.755 | Pr × Set: F(6,108) = 3.2; p = 0.028 Pr × Sex: F(3,54) = 0.2; p = 0.906 Set × Sex: F(2,36) = 1.8; p = 0.181 Pr × Set × Sex: F(6,108) = 1.8; p = 0.116 |
Women | 7.4 ± 2.6 | 17.1 ± 2.6 | 7.3 ± 3.1 | 9.6 ± 3.6 | ||||
2 | Men | 9.8 ± 3.2 | 17.3 ± 4.9 | 5.9 ± 2.3 | 8.9 ± 3.5 | |||
Women | 10.0 ± 6.3 | 19.7 ± 7.2 | 5.1 ± 2.7 | 7.7 ± 2.2 | ||||
3 | Men | 10.1 ± 3.9 | 15.4 ± 4.8 | 4.5 ± 1.8 | 7.8 ± 3.2 | |||
Women | 12.0 ± 8.2 | 18.0 ± 8.2 | 5.1 ± 2.8 | 8.0 ± 3.3 | ||||
Fastest velocity (m·s−1) | 1 | Men | 0.76 ± 0.07 | 0.73 ± 0.07 | 0.54 ± 0.06 | 0.55 ± 0.07 | Pr: F(3,54) = 80.9; p ˂ 0.001 Set: F(2,36) = 4.3; p = 0.021 Sex: F(1,19) = 4.4; p = 0.051 | Pr × Set: F(6,108) = 1.7; p = 0.129 Pr × Sex: F(3,54) = 5.8; p = 0.002 Set × Sex: F(2,36) = 0.9; p = 0.432 Pr × Set × Sex: F(6,108) = 0.8; p = 0.584 |
Women | 0.67 ± 0.03 | 0.67 ± 0.05 | 0.57 ± 0.07 | 0.52 ± 0.05 | ||||
2 | Men | 0.77 ± 0.07 | 0.70 ± 0.06 | 0.55 ± 0.04 | 0.53 ± 0.07 | |||
Women | 0.67 ± 0.07 | 0.66 ± 0.05 | 0.56 ± 0.07 | 0.50 ± 0.05 | ||||
3 | Men | 0.76 ± 0.06 | 0.69 ± 0.06 | 0.53 ± 0.06 | 0.53 ± 0.05 | |||
Women | 0.67 ± 0.06 | 0.64 ± 0.04 | 0.57 ± 0.05 | 0.52 ± 0.04 | ||||
Average velocity (m·s−1) | 1 | Men | 0.70 ± 0.06 | 0.63 ± 0.06 | 0.48 ± 0.05 | 0.47 ± 0.06 | Pr: F(3,54) = 84.5; p ˂ 0.001 Set: F(2,36) = 1.4; p = 0.260 Sex: F(1,19) = 2.5; p = 0.132 | Pr × Set: F(6,108) = 3.9; p = 0.002 Pr × Sex: F(3,54) = 4.9; p = 0.005 Set × Sex: F(2,36) = 0.2; p = 0.791 Pr × Set × Sex: F(6,108) = 1.1; p = 0.348 |
Women | 0.62 ± 0.02 | 0.59 ± 0.05 | 0.52 ± 0.07 | 0.45 ± 0.04 | ||||
2 | Men | 0.71 ± 0.06 | 0.62 ± 0.06 | 0.49 ± 0.04 | 0.45 ± 0.05 | |||
Women | 0.63 ± 0.05 | 0.58 ± 0.05 | 0.51 ± 0.07 | 0.45 ± 0.04 | ||||
3 | Men | 0.71 ± 0.06 | 0.61 ± 0.06 | 0.48 ± 0.05 | 0.45 ± 0.04 | |||
Women | 0.64 ± 0.05 | 0.56 ± 0.06 | 0.51 ± 0.06 | 0.46 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Castilla, A.; Ruiz-Alias, S.A.; Ramirez-Campillo, R.; Miras-Moreno, S.; García-Pinillos, F.; Marcos-Blanco, A. Acute Effect of Velocity-Based Resistance Training on Subsequent Endurance Running Performance: Volume and Intensity Relevance. Appl. Sci. 2024, 14, 2736. https://doi.org/10.3390/app14072736
Pérez-Castilla A, Ruiz-Alias SA, Ramirez-Campillo R, Miras-Moreno S, García-Pinillos F, Marcos-Blanco A. Acute Effect of Velocity-Based Resistance Training on Subsequent Endurance Running Performance: Volume and Intensity Relevance. Applied Sciences. 2024; 14(7):2736. https://doi.org/10.3390/app14072736
Chicago/Turabian StylePérez-Castilla, Alejandro, Santiago A. Ruiz-Alias, Rodrigo Ramirez-Campillo, Sergio Miras-Moreno, Felipe García-Pinillos, and Aitor Marcos-Blanco. 2024. "Acute Effect of Velocity-Based Resistance Training on Subsequent Endurance Running Performance: Volume and Intensity Relevance" Applied Sciences 14, no. 7: 2736. https://doi.org/10.3390/app14072736
APA StylePérez-Castilla, A., Ruiz-Alias, S. A., Ramirez-Campillo, R., Miras-Moreno, S., García-Pinillos, F., & Marcos-Blanco, A. (2024). Acute Effect of Velocity-Based Resistance Training on Subsequent Endurance Running Performance: Volume and Intensity Relevance. Applied Sciences, 14(7), 2736. https://doi.org/10.3390/app14072736