A Performance Evaluation Approach for Satellite Attitude Control System in Tracking Mode
Abstract
:1. Introduction
2. Problem Description
2.1. Satellite Attitude Control System Tracking Model
2.2. Challenges in System Performance Evaluation under Tracking Mode
3. Satellite Attitude Control System Evaluation Indicator Set Construction
3.1. Performance Evaluation Indicator Set
- (1)
- Attitude pointing accuracy.
- (2)
- Relative attitude pointing accuracy.
- (3)
- Pointing stability.
- (4)
- Maneuvering angular velocity.
- (5)
- Attitude control response time.
- (6)
- Attitude control response time.
3.2. Standardization of Performance Indicators
3.3. Grey Numerical Transformation of Indicators
4. Establishment of Performance Indicator Evaluation Model
4.1. Improved Principal Component Weight Determination Method Based on Generalized Grey Numbers
4.2. Implementation Steps of Grey-Target Decision Assessment Model
4.3. Performance Indicators of the Performance Evaluation
5. Evaluation Experiment and Analysis
5.1. Evaluation Results for Sun-Pointing Mode
5.2. Parameter Sensitivity Analysis
5.3. Comparative Analysis of Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, B.T. The development and prospect of China’s space earth observation technology. Acta Geod. Cartogr. Sin. 2022, 51, 1153–1159. [Google Scholar]
- Zhong, Z.X.; Wu, D.H.; Zhong, Y.; Li, Y.P.; Zhang, R.; Liu, B. Status and Prospect of Beidou Satellite Navigation System. Mod. Min. 2022, 38, 43–46, 54. [Google Scholar]
- Xu, C.B.; Zuo, X.; Li, Y.Y.; Wang, J.X. Overview of the application research of meteorological satellites in China. Aerosp. China 2022, 2022, 9–16. [Google Scholar]
- Hui, Y.; Cheng, Y.; Jiang, B.; Yang, L. A Method for Satellite Component Health Assessment Based on Multiparametric Data Distribution Characteristics. Aerospace 2023, 10, 356. [Google Scholar] [CrossRef]
- Hui, Y.; Cheng, Y.; Jiang, B.; Han, X.; Yang, L. A Novel Approach to Satellite Component Health Assessment Based on the Wasserstein Distance and Spectral Clustering. Appl. Sci. 2023, 13, 9438. [Google Scholar] [CrossRef]
- Xueying, A.; Yong, Z.; Leping, Y.; Weihua, Z. Simulation of effectiveness evaluation for satellite systems based on fuzzy theory. J. Syst. Simul. 2006, 18, 2334–2337. [Google Scholar]
- Bolkunov, A.; Krasil’shikov, M.; Malyshev, V. Comprehensive Assessment of the Effectiveness of Navigation Satellite Systems. J. Comput. Syst. Sci. Int. 2022, 61, 430–446. [Google Scholar] [CrossRef]
- Li, C.; Lai, P.; Li, M.; He, J.R. Efficiency Evaluation of GEO Optical Remote Sensing Satellite Based on ADC Model. Ship Electron. Eng. 2021, 41, 179–183. [Google Scholar]
- Yu, Y.L.; Zheng, Q.Y.; Yang, S.Q.; Chang, X.; Fang, X.M. Satellite Comprehensive Effectiveness Evaluation Based on Multi—Factor Fuzzy Reasoning. Comput. Meas. Control 2020, 28, 267–271. [Google Scholar]
- Zhou, X.H.; Cao, Y.H.; Zhao, H.Y. Research on effectiveness evaluation model of communication satellite based on GA-BP neural network. Value Eng. 2021, 40, 5. [Google Scholar]
- Kazakeviciute-Januskeviciene, G.; Janusonis, E.; Bausys, R. Evaluation of the segmentation of remote sensing images. In Proceedings of the 2021 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 22 April 2021; pp. 1–7. [Google Scholar]
- Yang, J. Study on the synthetic effectiveness evaluation of satellite navigation system based on the fuzzy theory. J. Astronaut. 2004, 25, 147–194. [Google Scholar]
- Shao, R.; Fang, Z.; Tao, L.; Gao, S.; You, W. A comprehensive G-Lz-ADC effectiveness evaluation model for the single communication satellite system in the context of poor information. Grey Syst. Theory Appl. 2022, 12, 417–461. [Google Scholar] [CrossRef]
- Chentao, L.; Lei, X.; Guoquan, Z. Effectiveness evaluation for earth observation satellite system based on analytic hierarchy process and adc model. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 2851–2854. [Google Scholar]
- Cao, Y.; Cheng, Y.H.; Gao, B.; Zhang, Y.H.; Xu, G.L. Research on effectiveness evaluation method of attitude control system of earth observation satellite. J. Beijing Univ. Aeron. Astron. 2024. [Google Scholar] [CrossRef]
- Xu, Z.F.; Chen, H.B.; Liu, S.F.; Cao, L. Analysis of pointing accuracy of three-axis tracking frame with eccentricity of optic axis. Optoelectron. Eng. 2007, 34, 12–16. [Google Scholar]
- Yang, J.; Liu, S. Grey systems: Theory and application. Grey Syst. Theory Appl. 2011, 4883, 44–45. [Google Scholar]
- Ma, J.; Zeng, Y.; Chen, D. Ramp Spacing Evaluation of Expressway Based on Entropy-Weighted TOPSIS Estimation Method. Systems 2023, 11, 139. [Google Scholar] [CrossRef]
- Deng, B. The Combination Method for Determining the Index Weight: Its Research and Application. Electron. Inf. Warf. Technol. 2016, 31, 12–16. [Google Scholar]
- Shao, H.; Fang, Z.; Zhang, Q.; Hu, Q.; Cai, J.; Tao, L. Research on an exponential distribution reliability function model based on multi-source heterogeneous data supplements. Grey Syst. Theory Appl. 2017, 7, 329–342. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, Z.G.; Tao, Y.L.; Liu, S.F. Generalized interval grey entropy weight distribution for combining cases indicators. Syst. Eng. Theory Pract. 2018, 38, 2057–2067. [Google Scholar]
- Zhang, Q.; Fang, Z.P.; Cai, J.J.; Liu, S.F. Generalized interval grey entropy-weight clustering model based on multiple heterogeneous uncertainty cases study. Control Decis. 2018, 33, 1481–1488. [Google Scholar]
- Liu, Q.; Gui, Z.; Xiong, S.; Zhan, M. A principal component analysis dominance mechanism based many-objective scheduling optimization. Appl. Soft Comput. 2021, 113, 107931. [Google Scholar] [CrossRef]
- Cai, J.J.; Fang, Z.G.; Zhang, Q.; Liu, S.F. Research on generalized grey target decision model based on principal component weight of improved regulating variables. Syst. Eng. Theory Pract. 2020, 40, 2991–2999. [Google Scholar]
- Zhang, Z.; Li, L.L.; Wei, Z.H.; Yu, H.F. Dynamic effectiveness evaluation of command and control system based on variable weight-projection gray target. Syst. Eng. Electron. 2019, 41, 801–809. [Google Scholar]
- Qin, B.; Shi, Z.; Hao, J.; Liang, B.; Sun, W.; He, F. Variable Weight-Projection Gray Target Evaluation Model of Degree of Protection of Protective Layer Mining. Energies 2022, 15, 4654. [Google Scholar] [CrossRef]
- Ping, X.; Huabin, C. Bidirectional projection grey target decision-making model based on three-parameter interval grey number. J. Phys. Conf. Ser. 2023, 2558, 012013. [Google Scholar]
- Ma, J.; Yuan, Z.; Zheng, G.; Lang, F. Combination Generalized Grey Target Decision Method for Mixed Attributes Based on Zero-Sum Game Theory. Group Decis. Negot. 2022, 31, 1121–1143. [Google Scholar] [CrossRef]
- Liang, G.H.; Zhu, Y.C.; Di, Y.Q. Fusion of Effectiveness Evaluation Result Based on Improved Compatibility Degree Maximizer Model. Fire Control Command Control 2011, 36, 114–117. [Google Scholar]
- Van Doren, D.; Driessen, P.P.; Schijf, B.; Runhaar, H.A. Evaluating the substantive effectiveness of SEA: Towards a better understanding. Environ. Impact Assess. Rev. 2013, 38, 120–130. [Google Scholar] [CrossRef]
- Wang, H.Q.; Mou, Z.L.; Guo, Y.Z. Effectiveness Evaluation of UAV Precise Support Based on AHP and Fuzzy Comprehensive Evaluation. Ship Electron. Eng. 2021, 41, 109–112. [Google Scholar]
Indicators | Pointing Accuracy | Relative Accuracy | Stability | Response Time | Angular Velocity | Energy Consumption |
---|---|---|---|---|---|---|
Sum of correlation coefficients | 1.8834 | 1.8378 | 1.9274 | 1.9425 | 2.1987 | 1.5909 |
Methods | Pointing Accuracy | Relative Accuracy | Stability | Response Time | Angular Velocity | Energy Consumption |
---|---|---|---|---|---|---|
Principal component | 0.0529 | 0.0063 | 0.0216 | 0.5072 | 0.3382 | 0.0737 |
Improved principal component | 0.1198 | 0.2147 | 0.1292 | 0.1837 | 0.1249 | 0.2277 |
Process | Pointing Accuracy | Relative Accuracy | Stability | Response Time | Angular Velocity | Energy Consumption | Off-Target Distance |
---|---|---|---|---|---|---|---|
S14 | 0.6427 | 0.9669 | 0.6936 | 0.6000 | 0.7892 | 1.0000 | 0.2502 |
S13 | 0.8078 | 0.8404 | 0.9622 | 0.5143 | 0.7315 | 0.8212 | 0.2640 |
S35 | 0.6052 | 0.7269 | 0.9534 | 0.6000 | 0.7653 | 0.8798 | 0.2730 |
S26 | 0.7855 | 0.9822 | 0.7028 | 0.4571 | 1.0000 | 0.7725 | 0.2880 |
S37 | 0.8942 | 0.9881 | 0.5508 | 0.6571 | 0.9712 | 0.5709 | 0.3018 |
S17 | 0.7047 | 0.9213 | 0.8955 | 0.5143 | 0.7542 | 0.6443 | 0.3048 |
S19 | 0.8667 | 0.9250 | 1.0000 | 0.3143 | 0.6799 | 0.9409 | 0.3214 |
S27 | 0.9206 | 0.9145 | 0.8621 | 0.3429 | 0.6720 | 0.7978 | 0.3269 |
S39 | 0.7822 | 0.9677 | 0.8772 | 0.8571 | 0.1213 | 0.8600 | 0.3354 |
S13 | 0.7263 | 0.9760 | 0.6363 | 0.6286 | 0.9749 | 0.4826 | 0.3355 |
Process | Pointing Accuracy | Relative Accuracy | Stability | Response Time | Angular Velocity | Energy Consumption | Off-Target Distance |
---|---|---|---|---|---|---|---|
S24 | 0.8474 | 0.0808 | 0.8004 | 0.5143 | 0.7058 | 0.0000 | 0.6864 |
S23 | 0.7855 | 0.1962 | 0.8114 | 0.4000 | 0.6649 | 0.0000 | 0.6758 |
S25 | 0.7313 | 0.0393 | 0.0000 | 0.5429 | 0.7161 | 0.8880 | 0.6223 |
S21 | 0.7364 | 0.9800 | 0.7925 | 0.8000 | 0.0000 | 0.0000 | 0.6115 |
S33 | 0.5773 | 0.8597 | 0.7982 | 0.0000 | 0.5759 | 0.3190 | 0.5854 |
S30 | 0.0000 | 0.7595 | 0.7795 | 0.3714 | 0.6589 | 0.2882 | 0.5838 |
S43 | 0.7760 | 0.0000 | 0.7962 | 0.4571 | 0.6824 | 0.5500 | 0.5821 |
S41 | 0.8397 | 0.0100 | 0.9065 | 0.4286 | 0.6727 | 0.5828 | 0.5724 |
S10 | 0.4414 | 0.9074 | 0.1045 | 0.1429 | 0.8045 | 0.6519 | 0.5569 |
S6 | 0.2314 | 0.8781 | 0.0000 | 0.7714 | 0.2527 | 0.7054 | 0.5498 |
Indicators | Main Effect Coefficients | Sort | Full Effect Coefficients | Sort |
---|---|---|---|---|
Attitude pointing accuracy | 0.3753 | 1 | 0.3618 | 1 |
Relative attitude pointing accuracy | 0.1334 | 4 | 0.1337 | 4 |
Pointing stability | 0.0313 | 5 | 0.0636 | 5 |
Attitude control response time | 0.3291 | 2 | 0.3066 | 2 |
Maneuvering angular velocity | 0.0295 | 6 | 0.0069 | 6 |
Attitude control energy consumption | 0.1654 | 3 | 0.1651 | 3 |
Improved Principal Component Grey Target | TOPSIS | FCE | |||
---|---|---|---|---|---|
S14 | 0.2502 | S14 | 0.7643 | S14 | 0.8107 |
S38 | 0.3640 | S26 | 0.7560 | S19 | 0.78857 |
S35 | 0.2730 | S37 | 0.7482 | S39 | 0.78327 |
S26 | 0.2880 | S38 | 0.7438 | S26 | 0.78066 |
S37 | 0.3018 | S35 | 0.7393 | S38 | 0.7744 |
S17 | 0.3048 | S13 | 0.7246 | S37 | 0.7624 |
S19 | 0.3214 | S17 | 0.7180 | S35 | 0.7579 |
S27 | 0.3269 | S19 | 0.7088 | S27 | 0.7466 |
S39 | 0.3354 | S27 | 0.6948 | S17 | 0.7333 |
S13 | 0.3355 | S4 | 0.6603 | S13 | 0.7259 |
Improved Principal Component Grey Target | TOPSIS | FCE | |||
---|---|---|---|---|---|
S24 | 0.6864 | S23 | 0.4678 | S23 | 0.3976 |
S23 | 0.6758 | S24 | 0.4794 | S24 | 0.4049 |
S25 | 0.6223 | S3 | 0.4825 | S30 | 0.4799 |
S21 | 0.6115 | S21 | 0.4882 | S25 | 0.4874 |
S33 | 0.5854 | S6 | 0.4948 | S43 | 0.4903 |
S30 | 0.5838 | S25 | 0.5059 | S33 | 0.5014 |
S43 | 0.5821 | S30 | 0.5124 | S36 | 0.5024 |
S41 | 0.5724 | S33 | 0.5128 | S41 | 0.5153 |
S10 | 0.5569 | S43 | 0.5185 | S22 | 0.5352 |
S6 | 0.5498 | S15 | 0.5190 | S10 | 0.5364 |
Improved Principal Component Grey Target | TOPSIS | FCE | |
---|---|---|---|
Maximum–minimum difference | 0.4362 | 0.2965 | 0.4131 |
Compatibility degree | 0.9238 | 0.9165 | 0.9124 |
Deviation | 0.0043 | 0.0031 | 0.0055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, L.; Cheng, Y.; Ying, K. A Performance Evaluation Approach for Satellite Attitude Control System in Tracking Mode. Appl. Sci. 2024, 14, 2867. https://doi.org/10.3390/app14072867
Zhang Y, Yang L, Cheng Y, Ying K. A Performance Evaluation Approach for Satellite Attitude Control System in Tracking Mode. Applied Sciences. 2024; 14(7):2867. https://doi.org/10.3390/app14072867
Chicago/Turabian StyleZhang, Yanhua, Lei Yang, Yuehua Cheng, and Kaixin Ying. 2024. "A Performance Evaluation Approach for Satellite Attitude Control System in Tracking Mode" Applied Sciences 14, no. 7: 2867. https://doi.org/10.3390/app14072867
APA StyleZhang, Y., Yang, L., Cheng, Y., & Ying, K. (2024). A Performance Evaluation Approach for Satellite Attitude Control System in Tracking Mode. Applied Sciences, 14(7), 2867. https://doi.org/10.3390/app14072867