Impact of the Pre-Harvest Biocontrol Agent and Post-Harvest Massive Modified Atmosphere Packaging Application on Organic Table Grape (cv. ‘Allison’) Quality during Storage
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material and Biocontrol Treatment
2.2. Packaging Equipment and Conditions
- -
- Sealed packaging (SP) with 20% CO2 and 10% O2
- -
- BlowDevice® (BlowDevice Ltd., Potenza, Italy) (International patent: PCT/IB2016/0506600) equipped packaging (BD) with 20% CO2 and 10% O2
- -
- Open packaging (OP)
2.3. Quality Standard Assessment
2.3.1. Mass Loss
2.3.2. Chemical and Physical-Chemical Attributes
2.3.3. Mechanical Properties of Berries
2.3.4. Total Counting Bacteria and Mould
2.4. Statistical Analysis
3. Results and Discussion
3.1. Colour
3.2. Weight Loss
3.3. Acidity, pH, and SSC
3.4. Mechanical Properties of the Berries
3.5. Microbiological Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2022. Available online: https://www.faostat.fao.org (accessed on 11 January 2024).
- STATISTA. 2024. Available online: https://www.statista.com/statistics/743083/production-volume-of-grapes-in-italy/ (accessed on 12 January 2024).
- Kader, A.A. Postharvest Technology of Horticultural Crops, 3rd ed.; Publication 3311; University of California, Agriculture and Natural Resources: Davis, CA, USA, 2002; p. 535. [Google Scholar]
- Ciccarese, A.; Stellacci, A.M.; Gentilesco, G.; Rubino, P. Effectiveness of preand post-veraison calcium applications to control decay and maintain table grape fruit quality during storage. Postharvest Biol. Technol. 2013, 75, 135–141. [Google Scholar] [CrossRef]
- Cefola, M.; Pace, B. High CO2-modified atmosphere to preserve sensory and nutritional quality of organic table grape (cv. ‘Italia’) during storage and shelf-life. Eur. J. Hortic. Sci. 2016, 81, 197–203. [Google Scholar] [CrossRef]
- Nia, A.E.; Taghipour, S.; Siahmansour, S. Pre-harvest application of chitosan and postharvest Aloe vera gel coating enhances quality of table grape (Vitis vinifera L. cv. ‘Yaghouti’) during postharvest period. Food Chem. 2021, 347, 129012. [Google Scholar]
- Droby, S.; Lichter, A. Post-harvest botrytis infection: Etiology development and management. In Botrytis: Biology, Pathology and Control; Elad, Y., Williamson, B., Tudzynski, P., Delen, N., Eds.; Kluwer Academic Publishers: London, UK, 2004; pp. 349–367. [Google Scholar]
- Carter, M.Q.; Chapman, M.H.; Gabler, F.; Brandl, M.T. Effect of sulfur dioxide fumigation on survival of foodborne pathogens on table grapes under standard storage temperature. Food Microbiol. 2015, 49, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Chervin, C.; Westercamp, P.; Monteils, G. Ethanol vapour limit Botrytis development over the postharvest life of Table grapes. Postharvest Biol. Technol. 2005, 36, 319–322. [Google Scholar]
- Zoffoli, J.P.; Latorre, B.A.; Naranjo, P. Hairline, a postharvest cracking disorder in Table grapes induced by sulfur dioxide. Postharvest Biol. Technol. 2008, 47, 90–97. [Google Scholar] [CrossRef]
- Guillén, F.; Zapata, P.J.; Martínez-Romero, D.; Castillo, S.; Serrano, M.; Valero, D. Improvement of the overall quality of table grapes stored under modified atmosphere packaging in combination with natural antimicrobial compounds. J. Food Sci. 2007, 72, 185–190. [Google Scholar] [CrossRef]
- Directive 95/2/CE, EU Directive du Parlement Europeen et du Conseil du 20 Fevrier Concernant les Additifs Alimentaires AUTRES que les Colorants et les Edulcorants. Journal Officiel No. L 61 du 18/3/1995. Available online: https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000000522989 (accessed on 26 March 2024).
- Mari, M.; Neri, F. Nuove tecniche di confezionamento per la GDO. In Metodi Innovativi di Gestione dei Frutti Nella Fase Post-Raccolta; Regione Emilia-Romagna Servizio Sviluppo del Sistema Agroalimentare Assessorato Agricoltura: Bologna, Italy, 2010; pp. 89–97. [Google Scholar]
- Fedele, G.; Gonzalez-Dominguez, E.; Rossi, V. Il Biocontrollo di Botrytis cinerea. Terra e Vita. 2019. Available online: https://terraevita.edagricole.it/ (accessed on 11 January 2024).
- Fedele, G.; Brischetto, C.; González-Domínguez, E.; Rossi, V. The Colonization of Grape Bunch Trash by Microorganisms for the Biocontrol of Botrytis cinerea as Influenced by Temperature and Humidity. Agronomy 2020, 10, 1829. [Google Scholar] [CrossRef]
- Gostinčar, C.; Grube, M.; Gunde-Cimerman, N. Evolution of Fungal Pathogens in Domestic Environments. Fungal Biol. 2011, 115, 1008–1018. [Google Scholar] [CrossRef]
- Galli, V.; Romboli, Y.; Barbato, D.; Mari, E.; Venturi, M.; Guerrini, S.; Granchi, L. Indigenous Aureobasidium pullulans Strains as Biocontrol Agents of Botrytis cinerea on Grape Berries. Sustainability 2021, 13, 9389. [Google Scholar] [CrossRef]
- Picciotti, U.; Araujo Dalbon, V.; Ciancio, A.; Colagiero, M.; Cozzi, G.; De Bellis, L.; Finetti-Sialer, M.M.; Greco, D.; Ippolito, A.; Lahbib, N.; et al. “Ectomosphere”: Insects and microorganism interactions. Microorganisms 2023, 11, 440. [Google Scholar] [CrossRef] [PubMed]
- Crisosto, C.H.; Garner, D.; Crisosto, G. Carbon dioxide enriched atmospheres during cold storage limit losses from Botrytis but accelerate rachis browning of ‘Redglobe’ Table grapes. Postharvest Biol. Technol. 2002, 26, 181–189. [Google Scholar] [CrossRef]
- Teles, C.S.; Benedetti, B.C.; Gubler, W.D.; Cristoso, C.H. Prestorage application of high carbon dioxide combined with controlled atmosphere storage as a dual approach to control Botrytis cinerea in organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes. Postharvest Biol. Technol. 2014, 89, 32–39. [Google Scholar] [CrossRef]
- Admane, N.; Genovese, F.; Altieri, F.; Tauriello, A.; Trani, A.; Gambacorta, G.; Verrastro, V.; Di Renzo, G.C. Effect of ozone or carbon dioxide pre-treatment during long-term storage of organic table grapes with modified atmosphere packaging. Food Sci. Technol. 2018, 98, 170–178. [Google Scholar] [CrossRef]
- Costa, C.; Lucera, A.; Conte, A.; Mastromatteo, M.; Speranza, B.; Antonacci, A.; Del Nobile, M.A. Effects of passive and active modified atmosphere packaging conditions on ready to eat Table grape. J. Food Eng. 2011, 102, 115–121. [Google Scholar] [CrossRef]
- Martínez-Romero, D.; Guillén, F.; Castillo, S.; Valero, D.; Serrano, M. Modified Atmosphere Packaging Maintains Quality of Table Grapes. Sensitive Nutr. Qual. Food 2003, 68, 1838–1843. [Google Scholar] [CrossRef]
- Artes-Hernandez, F.; Tomas Barber, F.A.; Artes, F. Modified atmosphere packaging preserves quality of SO2 free ‘Superior seedless’ table grapes. Postharvest Biol. Technol. 2005, 39, 146–154. [Google Scholar] [CrossRef]
- Admane, N.; Altieri, G.; Genovese, F.; Di Renzo, G.C.; Verrastro, V.; Tarricone, L.; Ippolito, A. Application of high carbon dioxide or ozone combined with map on organic late-season ‘Scarlotta seedless®’ table grapes. Acta Hortic. 2015, 1079, 193–199. [Google Scholar] [CrossRef]
- Altieri, G.; Genovese, F.; Matera, A.; Tauriello, A.; Di Renzo, G.C. Characterization of an innovative device controlling gaseous exchange in packages for food products. Postharvest Biol. Technol. 2018, 138, 64–73. [Google Scholar] [CrossRef]
- Matera, A.; Altieri, G.; Genovese, F.; Scarano, L.; Genovese, G.; Di Renzo, G.C. A novel breathable package system to improve the fresh fig (Ficus carica L. ‘Dottato’) shelf life. J. Sci. Food Agric. 2023, 103, 1105–1114. [Google Scholar]
- Information from European Union Institutions, Bodies, Offices and Agencies. List and Description of Methods of Analysis Referred to in the First Paragraph of Article 120g of Council Regulation (EC) No 1234/2007. Total Acidity (OIV-AS-313-01-ACITOT), p. 27. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2010:043:0001:0060:EN:PDF (accessed on 26 March 2024).
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.A. Measuring the color of table grapes. Color Res. Appl. 1996, 21, 50–54. [Google Scholar] [CrossRef]
- Letaief, H.; Rolle, L.; Gerbi, V. Mechanical behaviour of wine grapes under compression tests. Am. J. Enol. Vitic. 2008, 59, 323–329. [Google Scholar] [CrossRef]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013.
- Elshafie, S.S.; Elshafie, H.S.; El Bayomi, R.M.; Camele, I.; Morshdy, A.E.M. Evaluation of the antimicrobial activity of four plant essential oils against some food and phytopathogens isolated from processed meat products in Egypt. Foods 2022, 11, 1159. [Google Scholar] [CrossRef]
- Burçak, İ.Ş.Ç.İ.; Fatih, Ş.E.N.; Özdemir, A.G.; Kaçar, E.; Altun, A. Effects of modified atmosphere packing (MAP) and cold treatment on organically grown table grape cultivars. Ege Üniversitesi Ziraat Fakültesi Derg. 2014, 51, 191–199. [Google Scholar]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Ann. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef]
- Merín, M.G.; Morata de Ambrosini, V.I. Kinetic and metabolic behaviour of the pectinolytic strain Aureobasidium pullulans GM-R-22 during pre-fermentative cold maceration and its effect on red wine quality. Int. J. Food Microbiol. 2018, 285, 18–26. [Google Scholar] [CrossRef]
- Merín, M.G.; Morata de Ambrosini, V.I. Application of a grape surface majority pectinolytic species, Aureobasidium pullulans, to low-temperature red winemaking: Development and stability of wine colour. J. Wine Res. 2020, 31, 218–239. [Google Scholar] [CrossRef]
- Mangaraj, S.; Goswami, T.K.; Mahajan, P.V. Applications of plastic films for modified atmosphere packaging of fruits and vegetables: A review. Food Eng. Rev. 2009, 1, 133–158. [Google Scholar] [CrossRef]
- Liguori, G.; D’Aquino, S.; Sortino, G.; De Pasquale, C.; Inglese, P. Effects of passive and active modified atmosphere packaging conditions on quality parameters of minimally processed table grapes during cold storage. J. Berry Res. 2015, 5, 131–143. [Google Scholar] [CrossRef]
- Dantas Guerra, I.C.; de Oliveira, P.D.L.; Fernandes Santos, M.M.; Carneiro Lúcio, A.S.S.; Tavares, J.F.; Barbosa-Filho, J.M.; Madruga, M.S.; de Souza, E.L. The effects of composite coatings containing chitosan and Mentha (piperita L. or x villosa Huds) essential oil on postharvest mold occurrence and quality of table grape cv Isabella. Innov. Food Sci. Emerg. Technol. 2016, 34, 112–121. [Google Scholar] [CrossRef]
- Zahedipour, P.; Asghari, M.; Abdollahi, B.; Alizadeh, M.; Danesh, Y.R. A comparative study on quality attributes and physiological responses of organic and conventionally grown table grapes during cold storage. Sci. Hortic. 2019, 247, 86–95. [Google Scholar] [CrossRef]
- Sanchez-Ballesta, M.T.; Jimenez, J.B.; Romero, I.; Orea, J.M.; Maldonado, R.; Gonzalez-Urena, A.; Escribano, M.I.; Merodio, C. Effect of high CO2 pretreatment on quality, fungal decay and molecular regulation of stilbene phytoalexin biosynthesis in stored table grape. Postharvest Biol. Technol. 2006, 42, 209216. [Google Scholar] [CrossRef]
- Sanchez-Ballesta, M.T.; Romeroa, I.; Jimenez, J.B.; Orea, J.M.; Gonzalez-Urena, A.; Escribano, M.I.; Merodio, C. Involvement of the phenylpropanoid pathway in the response of table grapes to low temperature and high CO2 levels. Postharvest Biol. Technol. 2007, 46, 2935. [Google Scholar] [CrossRef]
- Topalovic, A.; Milukovic-Petkovsek, M. Changes in sugars, organic acids and phenolics of grape berries of cultivar Cardinal during ripening. J. Food Agric. Environ. 2010, 8, 223–227. [Google Scholar]
- Gilbert, R.J.; De Louvois, J.; Donovan, T.; Little, C.; Nye, K.; Ribeiro, C.D.; Bolton, F.J. Guidelines for the microbiological quality of some ready-to-eat foods sampled at the point of sale. PHLS Advisory Committee for Food and Dairy Products. Commun. Dis. Public Health 2000, 3, 163–167. [Google Scholar]
- Bolton, E.; Little, C.; Aird, H.; Greenwood, M.; McLauchlin, J.; Meldrum, R.; Grant, K. Guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. Health Prot. Agency. Lond. Health Prot. Agency 2009, 33, 14–15. [Google Scholar]
- Health Canada. Microbial Guidelines for Ready-to-Eat Foods a Guide for the Conveyance Industry and Environment Health Officers (EHO); Health Canada: Ottawa, ON, Canada, 2010; pp. 2–7. ISBN 978-1-100-22133-5.
- Centre for Food Safety. Microbiological Guidelines for Food (for Ready-to-eat FOOD in General and Specific Food Items); Food and Environmental Hygiene Department: Hong Kong, China, 2014; pp. 7–9.
- Yalage Don, S.M.; Schmidtke, L.M.; Gambetta, J.M.; Steel, C.C. Volatile organic compounds produced by Aureobasidium pullulans induce electrolyte loss and oxidative stress in Botrytis cinerea and Alternaria alternate. Res. Microbiol. 2021, 72, 103788. [Google Scholar]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol. 2015, 47, 85–92. [Google Scholar] [CrossRef]
Grape Cultivar | Pre-Treatment | Tray/Bag/Tank Material | Mass | Atmosphere Composition | Storage Condition | Shelf Life | Reference |
---|---|---|---|---|---|---|---|
Redglobe | Precooling 0 °C | Sealed aluminium tank CF | NS | CA CO2: 10%, O2: 3/6/12% | 0 °C | 90 | [19] |
Flame Seedless | %CO2 40 for 48 h | Sealed metal tank CF | NS | CA O2: 12%, CO2:12% | 1 °C, 95% RH | 66 | [20] |
Scarlotta Seedless | 50–70% CO2 for 24 h; 5/10/20 ppm O3 for 30 min | PA/PE | NS | MAP O2: 2%, CO2: 5% | 0 °C 95% RH | 45 | [21] |
Palieri | Ethanol 50% for 5 min | OPP | 100 g | MAP O2: 5/10/15% CO2: 3% | 5 °C | 70 | [22] |
Flame Seedless | - | Perforated OPP | 140 g | Air | 1 °C 90% RH | 20 | [23] |
Superior Seedless | Pre-cooling 0 °C | Microperforated OPP/PP | 500 g | Air | 7 d at 0 °C, 80–90% RH, 4 d at 8 °C | 12 | [24] |
Parameter | Treatment | Products | |||||||
---|---|---|---|---|---|---|---|---|---|
Fresh | CV% | BD | CV% | SP | CV% | OP | CV% | ||
Mass Loss (%) | BA | - | - | 0.14 ± 0.02 Ba | 17.55 | 0.04 ± 0.01 Aa | 25.00 | 5.75 ± 0.47 Ca | 8.20 |
Control | - | - | 0.12 ± 0.01 Ba | 12.06 | 0.06 ± 0.01 Aa | 22.91 | 6.23 ± 0.55 Ca | 8.83 | |
Acidity (g/L) | BA | 7.18 ± 0.49 Aa | 6.84 | 6.61 ± 0.14 Aa | 2.24 | 6.75 ± 0.54 Aa | 8.06 | 6.68 ± 0.44 Aa | 6.66 |
Control | 6.72 ± 0.37 Aa | 5.51 | 6.51 ± 0.19 Aa | 3.04 | 6.78 ± 0.11 Aa | 1.67 | 6.45 ± 0.44 Aa | 6.80 | |
pH | BA | 3.78 ± 0.04 Ba | 1.15 | 3.73 ± 0.07 Ba | 2.08 | 3.63 ± 0.01 Ba | 0.38 | 3.39 ± 0.01 Aa | 0.42 |
Control | 3.75 ± 0.01 Ba | 0.41 | 3.78 ± 0.04 Ba | 1.31 | 3.56 ± 0.07 Ba | 1.99 | 3.52 ± 0.01 Aa | 0.20 | |
SSC (°Brix) | BA | 20.58 ± 0.80 Ba | 3.93 | 18.24 ± 1.16 Aa | 6.41 | 18.46 ± 1.41 Aa | 7.64 | 20.02 ± 0.60 Ba | 3.03 |
Control | 21.81 ± 2.15 Cb | 9.89 | 18.40 ± 1.09 Aa | 5.93 | 21.36 ± 2.49 BCb | 11.68 | 19.34 ± 0.62 ABa | 3.23 | |
L* | BA | 35.10 ± 1.01 Bb | 2.88 | 35.29 ± 1.34 Bb | 3.79 | 34.44 ± 1.61 ABb | 4.68 | 33.83 ± 1.37 Aa | 4.05 |
Control | 33.61 ± 0.98 Aa | 2.91 | 34.12 ± 0.91 Aa | 2.66 | 33.53 ± 1.17 Aa | 3.49 | 33.75 ± 0.72 Aa | 2.12 | |
a* | BA | 6.79 ± 0.73 Aa | 10.76 | 7.91 ± 0.47 Ca | 6.05 | 7.13 ± 0.63 ABa | 8.85 | 7.33 ± 0.52 Ba | 7.21 |
Control | 7.00 ± 0.66 Aa | 9.50 | 7.75 ± 0.68 Ba | 8.74 | 6.95 ± 0.71 Aa | 10.32 | 7.07 ± 0.74 Aa | 10.56 | |
b* | BA | 10.60 ± 0.86 Ab | 8.14 | 11.85 ± 0.56 Ab | 4.76 | 11.01 ± 0.66 Ab | 6.00 | 11.04 ± 6.67 Ab | 6.04 |
Control | 10.60 ± 0.47 Aa | 4.46 | 11.56 ± 1.16 Aa | 10.08 | 10.78 ± 0.60 Aa | 5.54 | 10.97 ± 0.51 Aab | 4.64 | |
CIRG | BA | 2.57 ± 0.06 Ba | 2.72 | 2.50 ± 0.10 Aa | 4.21 | 2.58 ± 0.11 Ba | 4.59 | 2.62 ± 0.07 Ba | 2.78 |
Control | 2.66 ± 0.05 Bb | 1.83 | 2.60 ± 0.08 Ab | 3.17 | 2.64 ± 0.06 Bb | 2.28 | 2.62 ± 0.04 ABa | 1.60 | |
Detachment | BA | 2.10 ± 0.84 Aa | 40.11 | 3.25 ± 1.77 Aa | 54.60 | 2.62 ± 0.83 Ab | 32.01 | 2.92 ± 1.16 Ab | 39.77 |
Control | 2.76 ± 1.36 Ba | 49.40 | 2.28 ± 1.12 ABa | 49.02 | 1.60 ± 0.60 Aa | 37.58 | 1.97 ± 0.80 ABa | 40.60 | |
Firmness | BA | 20.66 ± 6.22 Aa | 30.13 | 24.69 ± 5.96 Aa | 24.13 | 25.58 ± 11.7 Aa | 45.99 | 28.51 ± 7.98 Aa | 28.02 |
Control | 21.53 ± 5.32 Aa | 24.72 | 26.63 ± 8.66 Aa | 32.51 | 24.70 ± 9.26 Aa | 37.49 | 24.05 ± 7.90 Aa | 32.08 | |
LogTBC (cfu/mL) | BA | 2.80 ± 0.15 Aa | 5.39 | 5.75 ± 0.18 Cb | 3.18 | 5.27 ± 0.33 Bb | 6.27 | 5.45 ± 0.14 Ba | 2.74 |
Control | 2.68 ± 0.18 Aa | 6.56 | 3.77 ± 0.25 Ba | 6.67 | 4.66 ± 0.20 Ca | 4.36 | 6.38 ± 0.10 Db | 1.65 | |
LogTMC (cfu/mL) | BA | 2.41 ± 0.17 Ab | 7.06 | 2.44 ± 0.31 Aa | 12.92 | 2.97 ± 0.15 Ba | 5.31 | 2.91 ± 0.26 Ba | 9.09 |
Control | 1.75 ± 0.17 Aa | 9.44 | 3.40 ± 0.44 BCb | 13.01 | 3.20 ± 0.07 Bb | 2.46 | 2.86 ± 0.12 Ca | 4.32 |
p-Value | |||
---|---|---|---|
Parameter | Packaging (P) | Treatment (T) | PxT |
Mass Loss | 0.000 | 0.256 | 0.297 |
Acidity | 0.858 | 0.092 | 0.979 |
pH | 0.000 | 0.691 | 0.037 |
SSC | 0.025 | 0.000 | 0.012 |
L* | 0.017 | 0.000 | 0.194 |
a* | 0.000 | 0.994 | 0.966 |
b* | 0.000 | 0.237 | 0.861 |
CIRG | 0.000 | 0.000 | 0.048 |
Detachment | 0.536 | 0.269 | 0.936 |
Firmness | 0.927 | 0.907 | 0.558 |
TBC | 0.000 | 0.014 | 0.000 |
TMC | 0.083 | 0.116 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matera, A.; Altieri, G.; Genovese, F.; Scarano, L.; Genovese, G.; Pinto, P.; Rashvand, M.; Elshafie, H.S.; Ippolito, A.; Mincuzzi, A.; et al. Impact of the Pre-Harvest Biocontrol Agent and Post-Harvest Massive Modified Atmosphere Packaging Application on Organic Table Grape (cv. ‘Allison’) Quality during Storage. Appl. Sci. 2024, 14, 2871. https://doi.org/10.3390/app14072871
Matera A, Altieri G, Genovese F, Scarano L, Genovese G, Pinto P, Rashvand M, Elshafie HS, Ippolito A, Mincuzzi A, et al. Impact of the Pre-Harvest Biocontrol Agent and Post-Harvest Massive Modified Atmosphere Packaging Application on Organic Table Grape (cv. ‘Allison’) Quality during Storage. Applied Sciences. 2024; 14(7):2871. https://doi.org/10.3390/app14072871
Chicago/Turabian StyleMatera, Attilio, Giuseppe Altieri, Francesco Genovese, Luciano Scarano, Giuseppe Genovese, Paola Pinto, Mahdi Rashvand, Hazem S. Elshafie, Antonio Ippolito, Annamaria Mincuzzi, and et al. 2024. "Impact of the Pre-Harvest Biocontrol Agent and Post-Harvest Massive Modified Atmosphere Packaging Application on Organic Table Grape (cv. ‘Allison’) Quality during Storage" Applied Sciences 14, no. 7: 2871. https://doi.org/10.3390/app14072871
APA StyleMatera, A., Altieri, G., Genovese, F., Scarano, L., Genovese, G., Pinto, P., Rashvand, M., Elshafie, H. S., Ippolito, A., Mincuzzi, A., & Di Renzo, G. C. (2024). Impact of the Pre-Harvest Biocontrol Agent and Post-Harvest Massive Modified Atmosphere Packaging Application on Organic Table Grape (cv. ‘Allison’) Quality during Storage. Applied Sciences, 14(7), 2871. https://doi.org/10.3390/app14072871