Analysis of Hybrid Ship Machinery System with Proton Exchange Membrane Fuel Cells and Battery Pack
Abstract
:Featured Application
Abstract
1. Introduction
2. Methodology
3. Numerical Background of Fuel Cell Model
4. Developed Numerical Model
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vidović, T.; Šimunović, J.; Radica, G.; Penga, Ž. Systematic Overview of Newly Available Technologies in the Green Maritime Sector. Energies 2023, 16, 641. [Google Scholar] [CrossRef]
- Adamolekun, G. Carbon price and firm greenhouse gas emissions. J. Environ. Manag. 2024, 349, 119496. [Google Scholar] [CrossRef] [PubMed]
- Fourth IMO GHG Study 2020 Full Report. Available online: https://www.imo.org/en/ourwork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx (accessed on 12 December 2023).
- Vidović, T.; Tolj, I.; Radica, G.; Ćoko, N.B. Proton-exchange membrane fuel cell balance of plant and per-2 formance simulation for vehicle applications. Int. J. Environ. Res. Public Health 2022, 15, 8110. [Google Scholar] [CrossRef]
- Marine Power with Toyota Fuel Cell Technology. Available online: https://www.toyota-europe.com/news/2023/marine-power (accessed on 12 December 2023).
- Pietra, A.; Gianni, M.; Zuliani, N.; Malabotti, S.; Taccani, R. Experimental characterization of a PEM fuel cell for marine power generation. In E3S Web of Conferences; EDP Sciences: Paris, France, 2022. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Fuel cell power systems for maritime applications: Progress and perspectives. Sustainability 2021, 13, 1213. [Google Scholar] [CrossRef]
- Lee, J.I.; Yoon, B.Y.; Cha, S.W. Analysis of solid oxide fuel cell hybrid power system in marine application for CO2 reduction. Energy Rep. 2023, 9, 3072–3081. [Google Scholar] [CrossRef]
- Elkafas, A.G.; Rivarolo, M.; Gadducci, E.; Magistri, L.; Massardo, A.F. Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives. Processes 2023, 11, 97. [Google Scholar] [CrossRef]
- Bagherabadi, K.M.; Skjong, S.; Bruinsma, J.; Pedersen, E. System-level modeling of marine power plant with PEMFC system and battery. Int. J. Nav. Archit. Ocean. Eng. 2022, 14, 100487. [Google Scholar] [CrossRef]
- Xie, P.; Asgharian, H.; Guerrero, J.M.; Vasquez, J.C.; Araya, S.S.; Liso, V. A two-layer energy management system for a hybrid electrical passenger ship with multi-PEM fuel cell stack. Int. J. Hydrogen Energy 2024, 50, 1005–1019. [Google Scholar] [CrossRef]
- Geertsma, R.D.; Negenborn, R.R.; Visser, K.; Hopman, J.J. Design and control of hybrid power and propulsion systems for smart ships: A review of developments. Appl. Energy 2017, 194, 30–54. [Google Scholar] [CrossRef]
- Miotti, M.; Hofer, J.; Bauer, C. Integrated environmental and economic assessment of current and future fuel cell vehicles. Int. J. Life Cycle Assess. 2017, 22, 94–110. [Google Scholar] [CrossRef]
- Barelli, L.; Bidini, G.; Gallorini, F.; Iantorno, F.; Pane, N.; Ottaviano, P.A.; Trombetti, L. Dynamic modeling of a hybrid propulsion system for tourist boat. Energies 2018, 11, 2592. [Google Scholar] [CrossRef]
- Oh, D.; Cho, D.-S.; Kim, T.-W. Design and evaluation of hybrid propulsion ship powered by fuel cell and bottoming cycle. Int. J. Hydrogen Energy 2023, 48, 8273–8285. [Google Scholar] [CrossRef]
- Choi, C.H.; Yu, S.; Han, I.-S.; Kho, B.-K.; Kang, D.-G.; Lee, H.Y.; Seo, M.-S.; Kong, J.-W.; Kim, G.; Ahn, J.-W.; et al. Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat. Int. J. Hydrogen Energy 2016, 41, 3591–3599. [Google Scholar] [CrossRef]
- Dolatabadi, S.H.; Ölçer, A.I.; Vakili, S. The Application of Hybrid Energy system (Hydrogen Fuel cell, wind, and solar) in shipping. Renew. Energy Focus 2023, 46, 197–206. [Google Scholar] [CrossRef]
- Bukar, A.L.; Tan, C.W. A review on stand-alone photovoltaic-wind energy system with fuel cell: System optimization and energy management strategy. J. Clean. Prod. 2019, 221, 73–88. [Google Scholar] [CrossRef]
- Yu, W.; Zhou, P.; Wang, H. Evaluation on the energy efficiency and emissions reduction of a short-route hybrid sightseeing ship. Ocean. Eng. 2018, 162, 34–42. [Google Scholar] [CrossRef]
- Waseem, M.; Amir, M.; Lakshmi, G.S.; Harivardhagini, S.; Ahmad, M. Fuel cell-based hybrid electric vehicles: An integrated review of current status, key challenges, recommended policies, and future prospects. Green Energy Intell. Transp. 2023, 2, 100121. [Google Scholar] [CrossRef]
- Handbook for Hydrogen-Fuelled Vessels. Available online: https://www.dnv.com/maritime/publications/handbook-for-hydrogen-fuelled-vessels-download/ (accessed on 12 December 2023).
- Bernitsas, M.M.; Ray, D.; Kinley, P. KT, KQ and Efficiency Curves for the Wageningen B-Series Propellers. Available online: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/91702/Publication_No_237.pdf?sequence=1&isAllowed=y (accessed on 31 January 2024).
- Lohse-Busch, H.; Stutenberg, K.; Duoba, M.; Liu, X.; Elgowainy, A.; Wang, M.; Wallner, T.; Richard, B.; Christenson, M. Automotive fuel cell stack and system efficiency and fuel consumption based on vehicle testing on a chassis dynamometer at minus 18 °C to positive 35 °C temperatures. Int. J. Hydrogen Energy 2020, 45, 861–872. [Google Scholar] [CrossRef]
- Kravos, A.; Ritzberger, D.; Tavc, G.; Hametner, C.; Jakubek, S.; Katras, T. Thermodynamically consistent reduced dimensionality electrochemical model for proton exchange membrane fuel cell performance modelling and control. J. Power Sources 2020, 454, 227930. [Google Scholar] [CrossRef]
- Springer, T.E.; Wilson, M.S.; Gottesfeld, S. Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 1993, 140, 3513–3526. [Google Scholar] [CrossRef]
- Penga, J.; Radica, G.; Penga, Ž.; Xing, L.; Bonković, K.; Xu, Q. Optimization of auxiliary channel dimensions for improved water removal from PEM fuel cells. In Proceedings of the 8th International Conference on Smart and Sustainable Technologies SpliTech 2023, Bol, Croatia, 20–23 June 2023. [Google Scholar]
- Li-Ion Voltage Analysis. Available online: https://siliconlightworks.com/li-ion-voltage (accessed on 12 December 2023).
- International Maritime Organization. Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (Eedi) for New Ships; International Maritime Organization: London, UK, 2022. [Google Scholar]
- Technology Assessment of a Fuel Cell Vehicle: 2017 Toyota Mirai Energy Systems Division. Available online: www.anl.gov (accessed on 12 December 2023).
Position | Distance | Velocity | Time | Propulsion Power | Distance Crossed |
---|---|---|---|---|---|
Unit | nm | kts | min | kW | nm |
Port of Split—start of route | 0 | 0 | 3 | 0 | 0 |
Port of Split—starting maneuver | 0.5 | 6 | 5 | 100 | 0.5 |
Port of Split—sailing ferry to Port Resnik | 5.7 | 12 | 28.5 | 600 | 6.2 |
Approach maneuver of ferry to Port Resnik | 0.3 | 6 | 3 | 80 | 6.5 |
Ferry in Port Resnik | 0 | 0 | 3 | 0 | 6.5 |
Boarding of passengers | 0 | 0 | 20 | 0 | 6.5 |
Departure of ferry from Port Resnik | 0 | 0 | 3 | 0 | 6.5 |
Ferry port Resnik—departure maneuver | 0.3 | 6 | 3 | 80 | 6.8 |
Ferry Port Resnik | 5.7 | 12 | 28.5 | 600 | 12.5 |
Approaching maneuver to Port of Split | 0.5 | 6 | 5 | 80 | 13 |
Ferry in Port of Split | 0 | 0 | 3 | 0 | 13 |
Boarding of passengers | 0 | 0 | 20 | 0 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penga, J.; Vidović, T.; Radica, G.; Penga, Ž. Analysis of Hybrid Ship Machinery System with Proton Exchange Membrane Fuel Cells and Battery Pack. Appl. Sci. 2024, 14, 2878. https://doi.org/10.3390/app14072878
Penga J, Vidović T, Radica G, Penga Ž. Analysis of Hybrid Ship Machinery System with Proton Exchange Membrane Fuel Cells and Battery Pack. Applied Sciences. 2024; 14(7):2878. https://doi.org/10.3390/app14072878
Chicago/Turabian StylePenga, Jure, Tino Vidović, Gojmir Radica, and Željko Penga. 2024. "Analysis of Hybrid Ship Machinery System with Proton Exchange Membrane Fuel Cells and Battery Pack" Applied Sciences 14, no. 7: 2878. https://doi.org/10.3390/app14072878
APA StylePenga, J., Vidović, T., Radica, G., & Penga, Ž. (2024). Analysis of Hybrid Ship Machinery System with Proton Exchange Membrane Fuel Cells and Battery Pack. Applied Sciences, 14(7), 2878. https://doi.org/10.3390/app14072878