Effect of the Incorporation of Compounds into Digitally Manufactured Dental Materials—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. PICO Question
2.2. Inclusion and Exclusion Criteria
2.3. Bibliographical Research
2.4. Data Extraction
2.5. Assessment of the Quality of Articles
3. Results
3.1. Results of the Bibliographical Research
3.2. Main Characteristics of the Studies Included in the Systematic Review
3.3. Surface Properties (Roughness, Topography and Wettability)
3.4. Mechanical Properties
3.5. Antimicrobial Properties
3.6. Biocompatibility
3.7. Quality Assessment of the Studies
4. Discussion
4.1. Surface Properties (Roughness, Topography and Wettability)
4.2. Mechanical Properties
4.3. Antimicrobial Properties and Biocompatibility
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.J.; Saponaro, P.C. Management of edentulous patients. Dent. Clin. N. Am. 2019, 63, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Krausch-Hofmann, S.; Cuypers, L.; Ivanova, A.; Duyck, J. Predictors of Patient Satisfaction with Removable Denture Renewal: A Pilot Study. J. Prosthodont. 2018, 27, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Conceição, P.; Franco, M.; Alves, N.; Portugal, J.; Neves, C.B. Fit accuracy of removable partial denture metal frameworks produced by CAD-CAM—A clinical study. Rev. Port. Estomatol. Med. Dentária E Cir. Maxilofac. 2021, 62, 194–200. [Google Scholar] [CrossRef]
- Batisse, C.; Nicolas, E. Comparison of CAD/CAM and Conventional Denture Base Resins: A Systematic Review. Appl. Sci. 2021, 11, 5990. [Google Scholar] [CrossRef]
- Janeva, N.M.; Kovacevska, G.; Elencevski, S.; Panchevska, S.; Mijoska, A.; Lazarevska, B. Advantages of CAD/CAM versus Conventional Complete Dentures-a Review. Open Access Maced. J. Med. Sci. 2018, 6, 1498. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Gjengedal, H.; Cattani-Lorente, M.; Moussa, M.; Durual, S.; Schimmel, M.; Müller, F. CAD/CAM Milled Complete Removable Dental Prostheses: An in Vitro Evaluation of Biocompatibility, Mechanical Properties, and Surface Roughness. Dent. Mater. J. 2018, 37, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D Printing in Dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef] [PubMed]
- De Armentia, S.L.; Fernández-Villamarín, S.; Ballesteros, Y.; Del Real, J.C.; Dunne, N.; Paz, E. 3D Printing of a Graphene-Modified Photopolymer Using Stereolithography for Biomedical Applications: A Study of the Polymerization Reaction. Int. J. Bioprinting 2022, 8, 182–197. [Google Scholar] [CrossRef] [PubMed]
- Kamonkhantikul, K.; Arksornnukit, M.; Takahashi, H. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. Int. J. Nanomed. 2017, 12, 2353–2360. [Google Scholar] [CrossRef] [PubMed]
- Awada, A.; Nathanson, D. Mechanical Properties of Resin-Ceramic CAD/CAM Restorative Materials. J. Prosthet. Dent. 2015, 114, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F. Advancements in CAD/CAM Technology: Options for Practical Implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- Khattar, A.; Alghafli, J.A.; Muheef, M.A.; Alsalem, A.M.; Al-Dubays, M.A.; AlHussain, H.M.; AlShoalah, H.M.; Khan, S.Q.; AlEraky, D.M.; Gad, M.M. Antibiofilm Activity of 3D-Printed Nanocomposite Resin: Impact of ZrO2 Nanoparticles. Nanomaterials 2023, 13, 591. [Google Scholar] [CrossRef] [PubMed]
- Aati, S.; Chauhan, A.; Shrestha, B.; Rajan, S.M.; Aati, H.; Fawzy, A. Development of 3D Printed Dental Resin Nanocomposite with Graphene Nanoplatelets Enhanced Mechanical Properties and Induced Drug-Free Antimicrobial Activity. Dent. Mater. 2022, 38, 1921–1933. [Google Scholar] [CrossRef] [PubMed]
- Aati, S.; Aneja, S.; Kassar, M.; Leung, R.; Nguyen, A.; Tran, S.; Shrestha, B.; Fawzy, A. Silver-Loaded Mesoporous Silica Nanoparticles Enhanced the Mechanical and Antimicrobial Properties of 3D Printed Denture Base Resin. J. Mech. Behav. Biomed. Mater. 2022, 134, 105421. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-G.; Yang, J.; Jia, Y.-G.; Lu, B.; Ren, L. TiO2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications. Nanomaterials 2019, 9, 1049. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, J.; Jia, Y.-G.; Lu, B.; Ren, L. A Study of 3D-Printable Reinforced Composite Resin: PMMA Modified with Silver Nanoparticles Loaded Cellulose Nanocrystal. Materials 2018, 11, 2444. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Boschetto, F.; Zanocco, M.; Honma, T.; Zhu, W.; Pezzotti, G. Explorative Study on the Antibacterial Effects of 3D-Printed PMMA/Nitrides Composites. Mater. Des. 2021, 206, 109788. [Google Scholar] [CrossRef]
- Kwon, J.-S.; Kim, J.-Y.; Mangal, U.; Seo, J.-Y.; Lee, M.-J.; Jin, J.; Yu, J.-H.; Choi, S.-H. Durable Oral Biofilm Resistance of 3D-Printed Dental Base Polymers Containing Zwitterionic Materials. Int. J. Mol. Sci. 2021, 22, 417. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, A.F.; Costa, J.; Ribeiro, I.A.C.; Gonçalves, L.; Arias-Moliz, M.T.; Dias, J.R.; Franco, M.; Alves, N.M.; Portugal, J.; Neves, C.B. Development of a chlorhexidine delivery system based on dental reline acrylic resins. Int. J. Pharm. 2023, 631, 122470. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.; Bettencourt, A.; Madeira, A.; Nepomuceno, L.S.; Portugal, J.; Neves, C.B. Surface Properties after Chemical Aging of Chlorhexidine Delivery Systems Based on Acrylic Resin. Rev. Port. Estomatol. Med. Dent. E Cir. Maxilofac. 2019, 60, 155–162. [Google Scholar] [CrossRef]
- Neves, C.B.; Costa, J.; Nepomuceno, L.; Madeira, A.; Portugal, J.; Bettencourt, A. Microhardness and Flexural Strength after Chemical Aging of chlorhexidine delivery systems based on acrylic resin. Rev. Port. Estomatol. Med. Dentária E Cir. Maxilofac. 2019, 60, 104–110. [Google Scholar] [CrossRef]
- Montoya, C.; Roldan, L.; Yu, M.; Valliani, S.; Ta, C.; Yang, M.; Orrego, S. Smart dental materials for antimicrobial applications. Bioact. Mater. 2022, 24, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Neves, C.B.; Costa, J.; Portugal, J.; Bettencourt, A.F. Understanding the Mechanical, Surface, and Color Behavior of Oral Bioactive Prosthetic Polymers under Biodegradation Processes. Polymers 2023, 15, 2549. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, A.; Florindo, H.F.; Ferreira, I.F.S.; Matos, A.; Monteiro, J.; Neves, C.; Lopes, L.P.; Calado, A.; Castro, M.; Almeida, A.J. Incorporation of tocopherol acetate-containing particles in acrylic bone cement. J. Microencapsul. 2010, 27, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Agarwalla, S.V.; Malhotra, R.; Rosa, V. Translucency, Hardness and Strength Parameters of PMMA Resin Containing Graphene-like Material for CAD/CAM Restorations. J. Mech. Behav. Biomed. Mater. 2019, 100, 103388. [Google Scholar] [CrossRef] [PubMed]
- Moher, D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Faggion, C.M., Jr. Guidelines for Reporting Pre-Clinical in Vitro Studies on Dental Materials. J. Evid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, A.A.; Khattar, A.; Almindil, I.A.; Alsaif, M.H.; Akhtar, S.; Khan, S.Q.; Gad, M.M. 3D-Printed Nanocomposite Denture-Base Resins: Effect of ZrO2 Nanoparticles on the Mechanical and Surface Properties in Vitro. Nanomaterials 2022, 12, 2451. [Google Scholar] [CrossRef] [PubMed]
- Hada, T.; Kanazawa, M.; Miyamoto, N.; Liu, H.; Iwaki, M.; Komagamine, Y.; Minakuchi, S. Effect of Different Filler Contents and Printing Directions on the Mechanical Properties for Photopolymer Resins. Int. J. Mol. Sci. 2022, 23, 2296. [Google Scholar] [CrossRef] [PubMed]
- Selva-Otaolaurruchi, E.J.; Fernández-Estevan, L.; Solá-Ruiz, M.F.; García-Sala-Bonmati, F.; Selva-Ribera, I.; Agustín-Panadero, R. Graphene-Doped Polymethyl Methacrylate (PMMA) as a New Restorative Material in Implant-Prosthetics: In Vitro Analysis of Resistance to Mechanical Fatigue. J. Clin. Med. 2023, 12, 1269. [Google Scholar] [CrossRef] [PubMed]
- Salgado, H.; Fialho, J.; Marques, M.; Vaz, M.; Figueiral, M.H.; Mesquita, P. Mechanical and Surface Properties of a 3D-Printed Dental Resin Reinforced with Graphene. Rev. Port. Estomatol. Med. Dent. Cir. Maxilofac. 2023, 64, 12–19. [Google Scholar] [CrossRef]
- Marin, E.; Mukai, M.; Boschetto, F.; Sunthar, T.P.; Adachi, T.; Zhu, W.; Rondinella, A.; Lanzutti, A.; Kanamura, N.; Yamamoto, T. Production of Antibacterial PMMA-Based Composites through Stereolithography. Mater. Today Commun. 2022, 32, 103943. [Google Scholar] [CrossRef]
- Raszewski, Z.; Kulbacka, J.; Nowakowska-Toporowska, A. Mechanical Properties, Cytotoxicity, and Fluoride Ion Release Capacity of Bioactive Glass-Modified Methacrylate Resin Used in Three-Dimensional Printing Technology. Materials 2022, 15, 1133. [Google Scholar] [CrossRef]
- Mangal, U.; Min, Y.J.; Seo, J.-Y.; Kim, D.-E.; Cha, J.-Y.; Lee, K.-J.; Kwon, J.-S.; Choi, S.-H. Changes in Tribological and Antibacterial Properties of Poly (Methyl Methacrylate)-Based 3D-Printed Intra-Oral Appliances by Incorporating Nanodiamonds. J. Mech. Behav. Biomed. Mater. 2020, 110, 103992. [Google Scholar] [CrossRef] [PubMed]
- Mangal, U.; Seo, J.-Y.; Yu, J.; Kwon, J.-S.; Choi, S.-H. Incorporating Aminated Nanodiamonds to Improve the Mechanical Properties of 3D-Printed Resin-Based Biomedical Appliances. Nanomaterials 2020, 10, 827. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, S.; Dhamodharan, D.B.; Kale, M.; Divakaran, N.; Senthil, T.P.S.; Wu, L.; Wang, J. A Novel Approach to Enhance Mechanical and Thermal Properties of SLA 3D Printed Structure by Incorporation of Metal–Metal Oxide Nanoparticles. Nanomaterials 2020, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Totu, E.; Cristache, C.; Isildak, İ.; Yildirim, R.; Burlibasa, M.; Nigde, M.; Burlibasa, L. Preliminary Studies on Citotoxicity and Genotoxicity Assessment of the PMMA-TiO2 Nanocompozites for Stereolithographic Complete Dentures Manufacturing. Rev. De Chim. 2018, 69, 1160–1165. [Google Scholar] [CrossRef]
- Totu, E.E.; Nechifor, A.C.; Nechifor, G.; Aboul-Enein, H.Y.; Cristache, C.M. Poly (Methyl Methacrylate) with TiO2 Nanoparticles Inclusion for Stereolitographic Complete Denture Manufacturing- the Fututre in Dental Care for Elderly Edentulous Patients? J. Dent. 2017, 59, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; D’Alpino, P.H.P.; Lopes, L.G.; Pereira, J.C. Mechanical Properties of Dental Restorative Materials: Relative Contribution of Laboratory Tests. J. Appl. Oral Sci. 2003, 11, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Albero, A.; Pascual, A.; Camps, I.; Grau-Benitez, M. Comparative Characterization of a Novel Cad-Cam Polymer-Infiltrated-Ceramic-Network. J. Clin. Exp. Dent. 2015, 7, e495–e500. [Google Scholar] [CrossRef] [PubMed]
- Pratap, B.; Gupta, R.; Bhardwaj, B.; Nag, M. Resin based restorative dental materials: Characteristics and future perspectives. Jpn. Dent. Sci. Rev. 2019, 55, 126–138. [Google Scholar] [CrossRef] [PubMed]
Study | Chemical Composition | Manufacturer | Manufacturing Technique | Distribution and Size of Particles | Quality Assessment Score | |
---|---|---|---|---|---|---|
Resin | Compound | |||||
Khattar et al., 2023 [13] | PMMA-based resin | Zirconium dioxide nanoparticles (ZrO2 NPs) | Denture 3D+, NextDent BV, Soesterberg, The Netherlands | SLA printing | Not determined | 8 average |
Selva-Otaolaurruchi et al., 2023 [32] | PMMA | Graphene oxide | Huge PMMA blocks, Huge Dental Material, Co., Beijing, China | Milling | Not determined | 8 average |
Salgado et al., 2023 [33] | PMMA-based resin | Graphene nanoplatelets (GNPs) 0%, 0.25%, 0.5% | Dental Sans, Harz Labs, Riga, Latvia | SLA printing | Not determined | 8 average |
Aati et al., 2022 [14] | PMMA-based resin | Graphene nanoplatelets (GNPs) 0.025%, 0.1%, 0.25% | Denture 3D+, NextDent BV, The Netherlands | DLP printing | Not determined | 7 average |
Aati et al., 2022 [15] | PMMA-based resin | Silver-reinforced mesoporous silica nanoparticles (Ag-MSN) 0.025%, 0.05%, 0.5%, 1.0%, 2.0% | Denture 3D+, NextDent BV, The Netherlands | DLP printing | Uniform distribution; size 10–20 nm. | 7 average |
Alshaikh et al., 2022 [30] | PMMA-based resin | Zirconium dioxide nanoparticles (ZrO2 NPs) 1%, 5% | Denture 3D+, NextDent BV, The Netherlands | DLP printing | Not determined | 9 average |
Hada et al., 2022 [31] | PMMA-based resin | Zirconium dioxide nanoparticles (ZrO2 NPs) | Photopolymer resin (Clear V4 resin) (Nagase ChemteX Corporation, Delaware, OH, USA) | SLA printing | Uniform distribution; average size 206 μm; particle size = 100–150 nm. | 8 average |
Marin et al., 2022 [34] | PMMA-based resin | Aluminum nitride; Barium titanate | Clear photoreactive resin, Formlabs, Somerville, MA, USA | SLA printing | Barium titanate better dispersion than aluminum nitride | 6 average |
Raszewski et al., 2022 [35] | PMMA-based resin | Bioactive glasses | FotoDent splint, Dreve, Unna, Germany | DPP printing | Not determined | 8 average |
Marin et al., 2021 [18] | PMMA-based resin | Ceramic nitrides | Clear photoreactive resin, Formlabs, USA | SLA printing | Not determined | 4 low |
Kwon et al., 2021 [19] | PMMA-based resin | Zwitterionic materials | Orthorigid, NextDent BV, The Netherlands | DLP printing | Not determined | 8 average |
Mangal et al., 2020 [36] | PMMA-based resin | Nanodiamonds | Orthorigid, NextDent BV, The Netherlands | DLP printing | Not determined | 7 average |
Mangal et al., 2020 [37] | PMMA-based resin | Aminated nanodiamonds | Orthorigid, NextDent BV, The Netherlands | DLP printing | Particle size 4–6 nm; more agglomerates of nanodiamonds than aminated nanodiamonds | 8 average |
Mubarak et al., 2020 [38] | Urethane-acrylate resin | Silver-reinforced titanium dioxide nanoparticles (Ag-TNP) 1%, 1.2% | Resin based on urethane-acrylate (Sartomer America, Exton, PA, USA) | SLA printing | Titanium dioxide = 30–40 nm; silver nanoparticles = 5–10 nm | 7 average |
Agarwalla et al., 2019 [26] | PMMA | Graphene | PMMA, Zotion, Chongqing, China | Milling | Not determined | 5 low |
Chen et al., 2019 [16] | PMMA-based resin | Titanium dioxide (TiO2)-polyether ether ketone (PEEK) nanoparticles TiO2-1%-PEEK-1%, TiO2-1%-PEEK-2% | Orthorigid, NextDent BV, The Netherlands | DLP printing | TiO2 nanoparticles = 40 nm; PEEK = 10 μm (irregular) | 6 average |
Chen et al., 2018 [17] | PMMA-based resin | Silver-reinforced cellulose nanocrystals (Ag-CNCs) 0.05, 0.1%, 0.25% | Denture 3D+, NextDent BV, The Netherlands | DLP printing | Particle size 80 nm, agglomerates due to the high hydroxyl bonding | 8 average |
Totu et al., 2018 [39] | PMMA-based resin | Titanium dioxide (TiO2) nanoparticles | E-Dent 100; E-Denture, EnvisionTec GmbH, Gladbeck, Germany | SLA printing | Not determined | 5 low |
Totu et al., 2017 [40] | PMMA-based resin | Titanium dioxide (TiO2) nanoparticles | E-Dent 100, EnvisionTec GmbH, Germany | SLA printing | Spherical structure; diameter 56–170 nm | 5 low |
Study | Surface Properties | Mechanical Properties | Antimicrobial Properties | Biocompatibility |
---|---|---|---|---|
Khattar et al., 2023 [13] ZrO2 NPs | Roughness: increased | -------------------- | CFU number: decreased | Cell proliferation: increased |
Selva-Otaolaurruchi et al., 2023 [32] Graphene oxide | -------------------- | Fracture strength: increased | -------------------- | -------------------- |
Salgado et al., 2023 [33] GNPs | Roughness: increased as concentration increased | Hardness: decreased as concentration increased Flexural strength: decreased as concentration increased | -------------------- | -------------------- |
Aati et al., 2022 [14] GNPs | Roughness: increased as concentration increased Topography: control = flat; 0.25% of graphene nanoplatelets = peaks of about 1 μm | Hardness: 0.25% graphene NPs = increased hardness Elastic modulus: decreased as concentration increased Flexural strength: decreased as concentration increased and after aging Fracture strength: decreased as concentration increased and after aging | Adhesion of C. albicans: decreased | Biocompatibility: no differences |
Aati et al., 2022 [15] Ag/MSN | Roughness: increased as concentration increased Topography: control = flat, Ag/MSN 2% = irregularity | Flexural strength: decreased as concentration increased and after aging Fracture toughness: increased as concentration increased, decreased after aging | C. albicans biofilm mass: decreased as concentration increased | FCell viability: increased with 0.025% and 0.05% Ag/MSN, decreased with 1.0% and 2.0% Ag/MSN |
Alshaikh et al., 2022 [30] ZrO2 NPs | Roughness: increased | Hardness: decreased Elastic modulus and flexural strength: dependent on the resin Impact strength: dependent on the resin | -------------------- | -------------------- |
Hada et al., 2022 [31] ZrO2 NPs | Hardness: increased as concentration increased Flexural strength: dependent on the printing direction | -------------------- | -------------------- | |
Marin et al., 2022 [34] aluminum nitride, barium titanate | Roughness: increased as concentration increased | -------------------- | CFU number: decreased | -------------------- |
Raszewski et al., 2022 [35] bioactive glasses | -------------------- | Flexural strength: decreased | -------------------- | Cell viability: 24 h incubation = no differences, 96 h incubation = decreased |
Marin et al., 2021 [18] ceramic nitrides | -------------------- | -------------------- | Antimicrobial activity: increased for E. coli and Staphylococcus epidermidis | -------------------- |
Kwon et al., 2021 [19] zwitterionic materials | Wettability: decreased contact angle, with and without aging | Hardness: decreased Elastic modulus and flexural strength: decreased, with and without aging | Bacterial adhesion: decreased for S. mutans, S. aureus, Klebsiella oxytoca, Klebsiella pneumoniae | Adsorption of proteins: decreased |
Mangal et al., 2020 [36] nanodiamonds | Roughness: no differences | Hardness: increased (18.71 ± 1.25 kg/mm2) vs. (15.91 ± 1.27 kg/mm2) Friction coefficient: increased Wear resistance: increased | Bacterial growth: decreased S. mutans | -------------------- |
Mangal et al., 2020 [37] aminated nanodiamonds | Wettability: decreased contact angle | Hardness: increased Flexural strength: increased | -------------------- | -------------------- |
Mubarak et al., 2020 [38] Ag/TNP | -------------------- | Hardness: increased as concentration increased Elastic modulus: decreased as concentration increased Flexural strength: increased as concentration increased Tensile strength: increased up to a concentration of 1% Ag; decreased in the group with Ag/TNF-1.2% | -------------------- | -------------------- |
Agarwalla et al., 2019 [26] Graphene | -------------------- | Hardness: decreased Flexural Strength: decreased | -------------------- | -------------------- |
Chen et al., 2019 [16] TiO2-PEEK | -------------------- | Flexural Strength: increased Impact Strength: increased | CFU number: decreased in S. aureus and E. coli | Cytotoxicity (CCK-8 assay): adequate Blood compatibility test: good blood tolerance |
Chen et al., 2018 [17] CNCs-Ag | -------------------- | Flexural Strength: increased but decreased as concentration increased; | Bacterial growth: decreased S. aureus and E. coli | Cytotoxicity: no differences |
Totu et al., 2018 [39] TiO2 nanoparticles | -------------------- | -------------------- | Antimicrobial activity: increase for S. aureus | Cytotoxicity: no differences DNA damage: no differences |
Totu et al., 2017 [40] TiO2 nanoparticles | -------------------- | -------------------- | Bacterial and fungi growth: decreased | -------------------- |
Items | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | 1 | 2a | 2b | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Score |
Khattar et al., 2023 [13] | yes | yes | yes | yes | yes | no | no | no | no | no | yes | yes | yes | no | no | 8 average |
Selva-Otaolaurr uchi et al., 2023 [32] | yes | yes | yes | yes | yes | no | no | no | no | no | yes | yes | yes | no | no | 8 average |
Salgado et al., 2023 [33] | yes | yes | yes | yes | yes | no | no | no | no | no | yes | yes | yes | no | no | 8 average |
Aati et al., 2022 [14] | yes | yes | yes | yes | yes | no | no | no | no | no | yes | yes | no | no | no | 7 average |
Aati et al., 2022 [15] | no | yes | yes | yes | yes | no | no | no | no | no | yes | yes | yes | no | no | 7 average |
Alshaik h et al., 2022 [30] | yes | yes | yes | yes | yes | no | no | no | no | no | yes | yes | yes | yes | no | 9 average |
Hada et al., 2022 [31] | no | yes | yes | yes | yes | no | no | no | no | no | yes | yes | yes | yes | no | 8 average |
Marin et al., 2022 [34] | no | yes | no | yes | yes | no | no | no | no | no | yes | yes | no | yes | no | 6 average |
Raszewsk i et al., 2022 [35] | yes | yes | yes | yes | yes | no | no | no | no | no | yes | yes | no | yes | no | 8 average |
Marin et al., 2021 [18] | no | yes | no | yes | yes | no | no | no | no | no | yes | no | no | no | no | 4 low |
Kwon et al., 2021 [19] | no | yes | yes | yes | yes | no | no | no | no | no | yes | yes | yes | yes | no | 8 average |
Manga l et al., 2020 [36] | yes | yes | yes | yes | yes | no | no | no | no | no | yes | yes | no | no | no | 7 average |
Manga l et al., 2020 [37] | yes | yes | yes | yes | yes | no | no | no | no | no | yes | yes | no | yes | no | 8 average |
Mubar ak et al. [38] | yes | yes | yes | yes | yes | no | no | no | no | no | no | no | no | yes | yes | 7 average |
Chen et al., 2019 [16] | no | yes | yes | yes | yes | no | no | no | no | no | no | no | no | yes | no | 5 low |
Agarw alla et al. [26] | no | yes | yes | yes | yes | no | no | no | no | no | yes | no | yes | no | no | 6 average |
Chen et al., 2018 [17] | no | yes | yes | yes | yes | no | no | no | no | no | yes | yes | no | yes | yes | 8 average |
Totu et al., 2018 [39] | no | yes | yes | yes | yes | no | no | no | no | no | no | yes | no | no | no | 5 low |
Totu et al. [40] | yes | yes | yes | yes | yes | no | no | no | no | no | no | no | no | no | no | 5 low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettencourt, A.; Jorge, C.; Anes, V.; Neves, C.B. Effect of the Incorporation of Compounds into Digitally Manufactured Dental Materials—A Systematic Review. Appl. Sci. 2024, 14, 2931. https://doi.org/10.3390/app14072931
Bettencourt A, Jorge C, Anes V, Neves CB. Effect of the Incorporation of Compounds into Digitally Manufactured Dental Materials—A Systematic Review. Applied Sciences. 2024; 14(7):2931. https://doi.org/10.3390/app14072931
Chicago/Turabian StyleBettencourt, Ana, Catarina Jorge, Vitor Anes, and Cristina Bettencourt Neves. 2024. "Effect of the Incorporation of Compounds into Digitally Manufactured Dental Materials—A Systematic Review" Applied Sciences 14, no. 7: 2931. https://doi.org/10.3390/app14072931
APA StyleBettencourt, A., Jorge, C., Anes, V., & Neves, C. B. (2024). Effect of the Incorporation of Compounds into Digitally Manufactured Dental Materials—A Systematic Review. Applied Sciences, 14(7), 2931. https://doi.org/10.3390/app14072931