Activity of Methanolic and Hydrolyzed Methanolic Extracts of Ricinus communis (Euphorbiaceae) and Kaempferol against Spodoptera frugiperda (Lepidoptera: Noctuidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material and Preparation of Extracts
2.2. Hydrolyzation of the Methanolic Extract of Ricinus communis
2.3. Reproduction of Spodoptera frugiperda
2.4. Evaluation of the Biological Activity of the Methanolic and Hydrolyzed Methanolic Extracts of Ricinus communis on Spodoptera frugiperda
2.5. Biological Activity of Kaempferol on Spodoptera frugiperda
2.6. Identification and Quantification of Kaempferol in the Methanolic and Hydrolyzed Methanolic Extracts of Aerial Parts of R. communis
2.7. Statistical Analysis
3. Results
3.1. Performance of Methanolic and Hydrolyzed Methanolic Extract of Ricinus communis
3.2. Insecticidal Activity of the Methanolic Extract of Ricinus communis on Spodoptera frugiperda
3.3. Insectistatic Activity of the Methanolic Extract of Ricinus communis on Spodoptera frugiperda
3.4. Insecticidal Activity of the Hydrolyzed Methanolic Extract of Ricinus communis on Spodoptera frugiperda
3.5. Insectistatic Activity of the Hydrolyzed Methanolic Extract of Ricinus communis on Spodoptera frugiperda
3.6. Identification and Quantification of Kaempferol in the Methanolic and Hydrolyzed Methanolic Extracts of Aerial Parts of R. communis
3.7. Insecticidal Activity of Kaempferol on Spodoptera frugiperda
3.8. Insectistatic Activity of Kaempferol on Spodoptera frugiperda
4. Discussion
4.1. Evaluation of Extract Yields
4.2. Evaluation of the Insecticidal Activity of the Methanolic and Hydrolyzed Methanolic Extracts of Ricinus communis against Spodoptera frugiperda
4.3. Evaluation of the Insecticidal Activity of Kaempferol against Spodoptera frugiperda
4.4. Evaluation of the Insectistatic Activity of the Methanolic and Hydrolyzed Methanolic Extracts of Ricinus communis against Spodoptera frugiperda
4.5. Identification and Quantification of Kaempferol in the Methanolic and Hydrolyzed Methanolic Extracts of Aerial Parts of R. communis
4.6. Evaluation of the Insectistatic Activity of Kaempferol against Spodoptera frugiperda
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rouf Shah, T.; Prasad, K.; Kumar, P. Maize—A Potential Source of Human Nutrition and Health: A Review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Tanumihardjo, S.A.; McCulley, L.; Roh, R.; Lopez-Ridaura, S.; Palacios-Rojas, N.; Gunaratna, N.S. Maize Agro-Food Systems to Ensure Food and Nutrition Security in Reference to the Sustainable Development Goals. Glob. Food Sec. 2020, 25, 100327. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Blanco, C.A.; Pellegaud, J.G.; Nava-Camberos, U.; Lugo-Barrera, D.; Vega-Aquino, P.; Coello, J.; Terán-Vargas, A.P.; Vargas-Camplis, J. Maize Pests in Mexico and Challenges for the Adoption of Integrated Pest Management Programs. J. Integr. Pest. Manag. 2014, 5, E1–E9. [Google Scholar] [CrossRef]
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 317. [Google Scholar] [CrossRef]
- Skenjana, N.; Afoloyan, A. Ethnobotanical Survey of Plants Used by Rural People in the Eastern Cape to Control Field Arthropod Pests of Maize. S. Afr. J. Bot. 2015, 98, 200–201. [Google Scholar] [CrossRef]
- Bentivenha, J.P.F.; Baldin, E.L.L.; Hunt, T.E.; Paula-Moraes, S.V.; Blankenship, E.E. Intraguild Competition of Three Noctuid Maize Pests. Environ. Entomol. 2016, 45, 999–1008. [Google Scholar] [CrossRef]
- Sparks, A.N. A Review of the Biology of the Fall Armyworm. Fla. Entomol. 1979, 62, 82. [Google Scholar] [CrossRef]
- Tay, W.T.; Rane, R.V.; James, W.; Gordon, K.H.J.; Downes, S.; Kim, J.; Kuniata, L.; Walsh, T.K. Resistance Bioassays and Allele Characterization Inform Analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) Introduction Pathways in Asia and Australia. J. Econ. Entomol. 2022, 115, 1790–1805. [Google Scholar] [CrossRef]
- Babendreier, D.; Toepfer, S.; Bateman, M.; Kenis, M. Potential Management Options for the Invasive Moth Spodoptera frugiperda in Europe. J. Econ. Entomol. 2022, 115, 1772–1782. [Google Scholar] [CrossRef]
- Acharya, R.; Hwang, H.S.; Mostafiz, M.M.; Yu, Y.S.; Lee, K.Y. Susceptibility of Various Developmental Stages of the Fall Armyworm, Spodoptera frugiperda, to Entomopathogenic Nematodes. Insects 2020, 11, 868. [Google Scholar] [CrossRef] [PubMed]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [PubMed]
- Kadiru, S.; Patil, S.; D’Souza, R. Effect of Pesticide Toxicity in Aquatic Environments: A Recent Review. Int. J. Fish. Aquat. Stud. 2022, 10, 113–118. [Google Scholar] [CrossRef]
- Aniwanou, C.T.S.; Sinzogan, A.A.C.; Deguenon, J.M.; Sikirou, R.; Stewart, D.A.; Ahanchede, A. Bio-Efficacy of Diatomaceous Earth, Household Soaps, and Neem Oil against Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae in Benin. Insects 2020, 12, 18. [Google Scholar] [CrossRef]
- Varghese, J.V.; Sebastian, E.M.; Iqbal, T.; Tom, A.A. Pesticide Applicators and Cancer: A Systematic Review. Rev. Environ. Health 2021, 36, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.A.H.; Rahman, M.H.; Uddin, M.A.; Chowdhury, M.A.Z.; Rahman, M.A.; Saha, B.B.; Didar-Ul Islam, S.M. Contamination of Pond and Canal Water by Residues of Organophosphorus and Carbamate Pesticides in Feni District, Bangladesh. Environ. Sustain. 2021, 4, 191–197. [Google Scholar] [CrossRef]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the Urban Environment: A Potential Threat That Knocks at the Door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef] [PubMed]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Sorption–Desorption of Dimethoate in Urban Soils and Potential Environmental Impacts. Environ. Sci. Process Impacts 2020, 22, 2256–2265. [Google Scholar] [CrossRef]
- Parven, A.; Khan, M.S.I.; Prodhan, M.D.H.; Venkateswarlu, K.; Megharaj, M.; Meftaul, I.M. Human Health Risk Assessment through Quantitative Screening of Insecticide Residues in Two Green Beans to Ensure Food Safety. J. Food Compos. Anal. 2021, 103, 104121. [Google Scholar] [CrossRef]
- Paredes-Sánchez, F.A.; Rivera, G.; Bocanegra-García, V.; Martínez-Padrón, H.Y.; Berrones-Morales, M.; Niño-García, N.; Herrera-Mayorga, V. Advances in Control Strategies against Spodoptera frugiperda. A Review. Molecules 2021, 26, 5587. [Google Scholar] [CrossRef]
- Phambala, K.; Tembo, Y.; Kasambala, T.; Kabambe, V.H.; Stevenson, P.C.; Belmain, S.R. Bioactivity of Common Pesticidal Plants on Fall Armyworm Larvae (Spodoptera frugiperda). Plants 2020, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Ramos-López, M.A.; Pérez, S.; Rodríguez-Hernández, C.; Guevara-Fefer, P.; Zavala-Sánchez, M.A. Activity of Ricinus communis (Euphorbiaceae) against Spodoptera frugiperda (Lepidoptera: Noctuidae). Afr. J. Biotechnol. 2010, 9, 1359–1365. [Google Scholar] [CrossRef]
- Kiplagat, A.J.; Irungu, C.M.; Kendagor, P.B. Chemical Composition of Azadirachta indica A. Juss and Ricinus communis Linn. Seed Oils Growing in Marigat, Baringo County, Kenya. East Afr. J. Sci. Technol. Innov. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Muraguri, S.; Xu, W.; Chapman, M.; Muchugi, A.; Oluwaniyi, A.; Oyebanji, O.; Liu, A. Intraspecific Variation within Castor Bean (Ricinus communis L.) Based on Chloroplast Genomes. Ind. Crop. Prod. 2020, 155, 112779. [Google Scholar] [CrossRef]
- Sogan, N.; Kapoor, N.; Singh, H.; Kala, S.; Nayak, A.; Nagpal, B. Larvicidal Activity of Ricinus communis Extract against Mosquitoes. J. Vector Borne Dis. 2018, 55, 282. [Google Scholar] [CrossRef]
- Sotelo-Leyva, C.; Salinas-Sánchez, D.O.; Peña-Chora, G.; Trejo-Loyo, A.G.; González-Cortázar, M.; Zamilpa, A. Insecticidal Compounds in Ricinus communis L. (Euphorbiaceae) to Control Melanaphis sacchari Zehntner (Hemiptera: Aphididae). Fla. Entomol. 2020, 103, 91–95. [Google Scholar] [CrossRef]
- Diédhiou, C.A. Evaluation of the Bio-Insecticidal Effect of Ricinus communis (Malpighiales: Euphorbiaceae) on the Larvae of Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae). Indian J. Pure Appl. Biosci. 2021, 9, 118–123. [Google Scholar] [CrossRef]
- Céspedes, C.L.; Alarcon, J.E.; Aqueveque, P.; Seigler, D.S.; Kubo, I. In the Search for New Secondary Metabolites with Biopesticidal Properties. Isr. J. Plant Sci. 2015, 62, 216–228. [Google Scholar] [CrossRef]
- Mladenović, M.; Arsić, B.; Stanković, N.; Mihović, N.; Ragno, R.; Regan, A.; Milićević, J.; Trtić Petrović, T.; Micić, R. The Targeted Pesticides as Acetylcholinesterase Inhibitors: Comprehensive Cross-Organism Molecular Modelling Studies Performed to Anticipate the Pharmacology of Harmfulness to Humans In Vitro. Molecules 2018, 23, 2192. [Google Scholar] [CrossRef]
- Del Rojas-Vera, J.C.; Buitrago-Díaz, A.A.; Possamai, L.M.; Timmers, L.F.S.M.; Tallini, L.R.; Bastida, J. Alkaloid Profile and Cholinesterase Inhibition Activity of Five Species of Amaryllidaceae Family Collected from Mérida State-Venezuela. S. Afr. J. Bot. 2021, 136, 126–136. [Google Scholar] [CrossRef]
- Rants’o, T.A.; Koekemoer, L.L.; van Zyl, R.L. In Vitro and in Silico Analysis of the Anopheles Anticholinesterase Activity of Terpenoids. Parasitol. Int. 2023, 93, 102713. [Google Scholar] [CrossRef] [PubMed]
- Smyrska, N.; Mroczek, T. Natural Inhibitors of Cholinesterases: Chemistry, Structure–Activity and Methods of Their Analysis. Int. J. Mol. Sci. 2023, 24, 2722. [Google Scholar] [CrossRef] [PubMed]
- Ademosun, A.O.; Oboh, G.; Bello, F.; Ayeni, P.O. Antioxidative Properties and Effect of Quercetin and Its Glycosylated Form (Rutin) on Acetylcholinesterase and Butyrylcholinesterase Activities. J. Evid. Based Complement. Altern. Med. 2016, 21, NP11–NP17. [Google Scholar] [CrossRef] [PubMed]
- Ohmura, W.; Doi, S.; Aoyama, M.; Ohara, S. Antifeedant Activity of Flavonoids and Related Compounds against the Subterranean Termite Coptotermes formosanus Shiraki. J. Wood Sci. 2000, 46, 149–153. [Google Scholar] [CrossRef]
- Flores-Macías, A.; Flores-Sánchez, M.A.; León-Herrera, L.R.; Mondragón-Olguín, V.M.; Zavala-Gómez, C.E.; Tapia-Pérez, A.D.; Campos-Guillén, J.; Amaro-Reyes, A.; Sandoval-Cárdenas, D.I.; de Romero-Gómez, S.J.; et al. Activity of Chloroformic Extract from Salvia connivens (Lamiales: Lamiaceae) and Its Principal Compounds against Spodoptera frugiperda (Lepidoptera: Noctuidae). Appl. Sci. 2021, 11, 11813. [Google Scholar] [CrossRef]
- Hernández-Caracheo, K.; Guerrero-López, L.; Rodríguez-Sánchez, B.; Rodríguez-Núñez, E.; Rodríguez-Chávez, J.L.; Delgado-Lamas, G.; Campos-Guillén, J.; Amaro-Reyes, A.; del Monroy-Dosta, M.C.; Zavala-Gómez, C.E.; et al. Evaluation of the Insecticidal Potential of Heterotheca inuloides Acetonic and Methanolic Extracts against Spodoptera frugiperda and Their Ecotoxicological Effect on Poecilia reticulata. Plants 2023, 12, 3555. [Google Scholar] [CrossRef] [PubMed]
- Carolina, A.; Herliyana, E.N.; Sulastri, H. Antifungal Activity of Castor (Ricinus communis L.) Leaves Methanolic Extract on Aspergillus Niger. Int. Food Res. J. 2019, 26, 595–598. [Google Scholar]
- García, T.E.; García, A.U.; Ramos, S.G.D.; López, P.M.G. Evaluación Del Rendimiento de Extractos En Hojas de Ricinus communis L. Concienc. Tecnológica 2016, 52, 12–23. [Google Scholar]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Almeida, V.T.; Ramos, V.M.; Saqueti, M.B.; Gorni, P.H.; Pacheco, A.C.; Leão, R.M. de Bioactivity of Ethanolic Extracts of Euphorbia Pulcherrima on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Afr. J. Biotechnol. 2017, 16, 615–622. [Google Scholar] [CrossRef]
- Santos, S.; Brasil, T.; de Souza, V.R.; de Lima, P.C.; Vilaça, E.; Rogério, A.; Pereira, A.; Batista, J.; Fernandes, M.F.d.G.; dos Santos, Â.M.; et al. Chemical constituents of methanolic extracts of Jatropha curcas L. and effects on Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Quim. Nova 2012, 35, 2218–2221. [Google Scholar] [CrossRef]
- Delvas, N.; Bauce, É.; Labbé, C.; Ollevier, T.; Bélanger, R. Phenolic Compounds That Confer Resistance to Spruce Budworm. Entomol. Exp. Appl. 2011, 141, 35–44. [Google Scholar] [CrossRef]
- Dowd, P.F.; Berhow, M.A.; Johnson, E.T. Differential Activity of Multiple Saponins Against Omnivorous Insects with Varying Feeding Preferences. J. Chem. Ecol. 2011, 37, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Pentzold, S.; Zagrobelny, M.; Rook, F.; Bak, S. How Insects Overcome Two-Component Plant Chemical Defence: Plant β-Glucosidases as the Main Target for Herbivore Adaptation. Biol. Rev. 2014, 89, 531–551. [Google Scholar] [CrossRef] [PubMed]
- Godlewska, K.; Ronga, D.; Michalak, I. Plant Extracts—Importance in Sustainable Agriculture. Ital. J. Agron. 2021, 16, 1851. [Google Scholar] [CrossRef]
- Su, Q.; Zhou, Z.; Zhang, J.; Shi, C.; Zhang, G.; Jin, Z.; Wang, W.; Li, C. Effect of Plant Secondary Metabolites on Common Cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Entomol. Res. 2018, 48, 18–26. [Google Scholar] [CrossRef]
- Herrera-Mayorga, V.; Guerrero-Sánchez, J.A.; Méndez-álvarez, D.; Paredes-Sánchez, F.A.; Rodríguez-Duran, L.V.; Niño-García, N.; Paz-González, A.D.; Rivera, G. Insecticidal Activity of Organic Extracts of Solidago graminifolia and Its Main Metabolites (Quercetin and Chlorogenic Acid) against Spodoptera frugiperda: An In Vitro and In Silico Approach. Molecules 2022, 27, 3325. [Google Scholar] [CrossRef] [PubMed]
- Onyilagha, J.C.; Lazorko, J.; Gruber, M.Y.; Soroka, J.J.; Erlandson, M.A. Effect of Flavonoids on Feeding Preference and Development of the Crucifer Pest Mamestra configurata Walker. J. Chem. Ecol. 2004, 30, 109–124. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Rashmi, R.; Toppo, V.; Chole, P.B.; Banadka, A.; Sudheer, W.N.; Nagella, P.; Shehata, W.F.; Al-Mssallem, M.Q.; Alessa, F.M.; et al. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023, 13, 716. [Google Scholar] [CrossRef]
- Castillo, L.; Rossini, C. Bignoniaceae Metabolites as Semiochemicals. Molecules 2010, 15, 7090–7105. [Google Scholar] [CrossRef]
- Sun, L.; Hou, W.; Zhang, J.; Dang, Y.; Yang, Q.; Zhao, X.; Ma, Y.; Tang, Q. Plant Metabolites Drive Different Responses in Caterpillars of Two Closely Related Helicoverpa Species. Front. Physiol. 2021, 12, 662978. [Google Scholar] [CrossRef]
- Kostikova, V.A.; Veklich, T.N. HPLC Analysis of Phenolic Compounds in Leaves and Inflorescences of Sorbaria pallasii. BIO Web. Conf. 2020, 24, 00040. [Google Scholar] [CrossRef]
- De Santiago, E.; Juániz, I.; Cid, C.; De Peña, M.P. Extraction of (Poly)Phenolic Compounds of Cactus (Opuntia ficus-indica (L.) Mill.) Cladodes. Food Anal. Methods 2021, 14, 1167–1175. [Google Scholar] [CrossRef]
- Henagamage, A.P.; Ranaweera, M.N.; Peries, C.M.; Premetilake, M.M.S.N. Repellent, Antifeedant and Toxic Effects of Plants-Extracts against Spodoptera frugiperda Larvae (Fall Armyworm). Biocatal. Agric. Biotechnol. 2023, 48, 102636. [Google Scholar] [CrossRef]
Substance | Amount |
---|---|
Ground corn | 120 g |
Ground bean | 60 g |
Yeast | 20 g |
Neomycin | 0.6 g |
Multivitamin | 2.5 g |
Ascorbic acid | 1.7 g |
Methyl 4-hydroxybenzoate | 1.7 g |
Bacteriological agar | 10 g |
Formaldehyde 10% | 2.5 mL |
Water | 800 mL |
Ethanol 96% | 17 mL |
Time (mins) | Acetic Acid 12.5 mM | Acetonitrile |
---|---|---|
0 | 95% | 5% |
2 | 95% | 5% |
5 | 85% | 15% |
20 | 50% | 50% |
25 | 95% | 5% |
35 | 95% | 5% |
Treatment (ppm) | Larval Duration (d) | Pupal Duration (d) | Pupal Weight 24 h (mg) |
---|---|---|---|
5000 | 31 ± 1.6 a | 15 ± 0.6 a | 166 ± 15.6 a |
4000 | 24 ± 0.5 b | 13 ± 0.4 bc | 191 ± 4.4 ab |
2000 | 23 ± 0.2 bc | 12 ± 0.2 bc | 211 ± 4.02 b |
1000 | 22 ± 0.4 cd | 12 ± 0.2 cd | 233.7 ± 4.0 c |
500 | 20 ± 0.3 de | 11 ± 0.2 de | 239.8 ± 4.3 cd |
0 | 20 ± 0.3 e | 10 ± 0.3 e | 254.2 ± 3.7 d |
Treatment (ppm) | Larval Duration (d) | Pupal Duration (d) | Pupal Weight 24 h (mg) |
---|---|---|---|
4000 | 29 ± 0.000 a | 10.5 ± 0.5 a | 178.50 ± 5.50 b |
2000 | 22.8 ± 0.970 ab | 9.8 ± 0.583 b | 185.6 ± 10.3 b |
1000 | 19.5 ± 0.598 bc | 10.125 ± 0.295 b | 197.63 ± 8.00 b |
500 | 18 ± 0.461 c | 9.917 ± 0.229 b | 206.67 ± 4.16 ab |
0 | 22.529 ± 0.974 b | 11.529 ± 0.311 a | 232.94 ± 8.45 a |
Treatment (ppm) | Larval Duration (d) | Pupal Duration (d) | Pupal Weight 24 h (mg) |
---|---|---|---|
1000 | 33 ± 1.4 a | 17 ± 0.5 a | 127.4 ± 10.7 d |
800 | 29 ± 0.95 b | 16 ± 0.8 a | 167.14 ± 7.1 c |
500 | 25 ± 0.4 c | 14 ± 0.3 b | 191.1 ± 4 bc |
300 | 22 ± 0.4 d | 13 ± 0.3 b | 205 ± 5 b |
100 | 21 ± 0.4 de | 11 ± 0.4 c | 210.2 ± 4.4 ab |
0 | 20 ± 0.4 e | 11 ± 0.3 c | 230.6 ± 6.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Cervantes, M.; Zavala-Gómez, C.E.; Hernández-Caracheo, K.; Campos-Guillén, J.; Rodríguez-de León, E.; Amaro-Reyes, A.; Rodríguez-Morales, J.A.; Jiménez-García, S.N.; Figueroa-Brito, R.; Salinas-Sánchez, D.O.; et al. Activity of Methanolic and Hydrolyzed Methanolic Extracts of Ricinus communis (Euphorbiaceae) and Kaempferol against Spodoptera frugiperda (Lepidoptera: Noctuidae). Appl. Sci. 2024, 14, 3128. https://doi.org/10.3390/app14073128
Rodríguez-Cervantes M, Zavala-Gómez CE, Hernández-Caracheo K, Campos-Guillén J, Rodríguez-de León E, Amaro-Reyes A, Rodríguez-Morales JA, Jiménez-García SN, Figueroa-Brito R, Salinas-Sánchez DO, et al. Activity of Methanolic and Hydrolyzed Methanolic Extracts of Ricinus communis (Euphorbiaceae) and Kaempferol against Spodoptera frugiperda (Lepidoptera: Noctuidae). Applied Sciences. 2024; 14(7):3128. https://doi.org/10.3390/app14073128
Chicago/Turabian StyleRodríguez-Cervantes, Manolo, Carlos Eduardo Zavala-Gómez, Karla Hernández-Caracheo, Juan Campos-Guillén, Eloy Rodríguez-de León, Aldo Amaro-Reyes, José Alberto Rodríguez-Morales, Sandra Neli Jiménez-García, Rodolfo Figueroa-Brito, David Osvaldo Salinas-Sánchez, and et al. 2024. "Activity of Methanolic and Hydrolyzed Methanolic Extracts of Ricinus communis (Euphorbiaceae) and Kaempferol against Spodoptera frugiperda (Lepidoptera: Noctuidae)" Applied Sciences 14, no. 7: 3128. https://doi.org/10.3390/app14073128
APA StyleRodríguez-Cervantes, M., Zavala-Gómez, C. E., Hernández-Caracheo, K., Campos-Guillén, J., Rodríguez-de León, E., Amaro-Reyes, A., Rodríguez-Morales, J. A., Jiménez-García, S. N., Figueroa-Brito, R., Salinas-Sánchez, D. O., Flores-Gallardo, F. J., & Ramos-López, M. A. (2024). Activity of Methanolic and Hydrolyzed Methanolic Extracts of Ricinus communis (Euphorbiaceae) and Kaempferol against Spodoptera frugiperda (Lepidoptera: Noctuidae). Applied Sciences, 14(7), 3128. https://doi.org/10.3390/app14073128