Study on the Macro-Fine Mechanical Behavior of Ore Flow Based on the Discrete Element Method
Abstract
:1. Introduction
2. Physical Test
2.1. Determination of Ore-Rock Particle Parameters
2.2. Construction of the Central Unloading Model
3. Construction of the Numerical Model
3.1. Determination of the Contact Model and Detailed Parameters
3.2. Establishment of the Numerical Model
3.3. Reliability Analysis of the Numerical Models
4. Flow Characteristics and Stress Distribution of Ore-Rock Bulk
4.1. Flow Characteristics of Ore-Rock Bulk
4.2. Stress Distribution of the Ore-Rock Bulk
4.2.1. Contact Density of Ore-Rock Bulk
4.2.2. Stress Distribution Characteristics of Ore-Rock Bulk
4.2.3. Contact Force Evolution Characteristics of Ore-Rock Bulk
4.3. Lateral Pressure Distribution of the Shaft Wall in the Storage Section
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, W. The study of arching mechanism of ores in chute based on discontinuous deformation analysis. Int. J. Digit. Content Technol. Its Appl. 2013, 7, 190. [Google Scholar]
- Alex, M.R.; Verne, M.; Sanjay, N.; Ting, R. Experimental and numerical investigation of high-yield grout ore pass plugs to resist impact loads. Int. J. Rock Mech. Min. Sci. 2014, 70, 1–15. [Google Scholar]
- Hadjigeorgiou, J.; Stacey, T.R. The absence of strategy in orepass planning, design, and management. J. South. Afr. Inst. Min. Metall. 2013, 113, 795–801. [Google Scholar]
- Liu, H.; He, R.; Li, G.; Sun, D.; Li, P. Development of gravity flow draw theory and determination of its parameters. Int. J. Rock Mech. Min. Sci. 2023, 171, 105582. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, P.; Wang, Y. Motion situation and kinetic energy analysis for ore pass of underground mine. Appl. Mech. Mater. 2011, 90–93, 383–386. [Google Scholar] [CrossRef]
- Ma, C.; Lu, Z.X.; Yin, Y.; Cao, P. Prediction model for the migration trajectory and velocity of ore-rock bulks in an orepass storage section. Chin. J. Eng. 2021, 43, 627–635. [Google Scholar]
- Zhao, Y.; Ye, H.W.; Lei, T.; Wang, C.; Wang, Q.Z.; Long, M. Theoretical study of damage characteristics on ore pass wall based on the erosion-wearing theory. Chin. J. Rock Mech. Eng. 2017, 36, 4002–4007. [Google Scholar]
- Jin, A.; Chen, S.; Sun, H.; Zhao, Y.; Qin, X.; Ju, Y.; Gao, Y. Characteristics of particle percolation based on inhomogeneous particle size distribution. J. Cent. South Univ. (Sci. Technol.) 2020, 51, 1673–1681. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, Z.; Lu, Z. Effects of ore-rock falling velocity on the stored materials and the force on the shaft wall in a vertical orepass. Mech. Adv. Mater. Struct. 2023, 30, 3455–3462. [Google Scholar] [CrossRef]
- Sato, A.; Tang, H. Analysis of Ore Pass Hang-Ups in Long Vertical Ore Passes by 3-D DEM. Int. J. Min. Eng. Miner. Process. 2020, 9, 1–11. [Google Scholar]
- Hadjigeorgiou, J.; Lessard, J.F. Numerical investigations of ore pass hang-up phenomena. Int. J. Rock Mech. Min. Sci. 2007, 44, 820–834. [Google Scholar] [CrossRef]
- Esmaieli, K.; Hadjigeorgiou, J.; Grenon, M. Stability analysis of the 19A ore pass at Brunswick Mine using a two-stage numerical modeling approach. Rock Mech. Rock Eng. 2013, 46, 1323–1338. [Google Scholar] [CrossRef]
- Yuan, F.; Pang, K.; Dong, C.; Xu, Z. The PFC3D numerical simulation on dynamic pressures and flow of sidedraw silos. Eng. Mech. 2016, 33, 301–305. [Google Scholar]
- González-Montellano, C.; Gallego, E.; Ramírez-Gómez, Á.; Ayuga, F. Three dimensional discrete element models for simulating the filling and emptying of silos: Analysis of numerical results. Comput. Chem. Eng. 2012, 40, 22–32. [Google Scholar] [CrossRef]
- Xu, P.; Duan, X.; Qian, G.; Zhou, X.G. Dependence of wall stress ratio on wall friction coefficient during the discharging of a 3D rectangular hopper. Powder Technol. 2015, 284, 326–335. [Google Scholar] [CrossRef]
- Cheng, Q.; Sun, W.; Lu, S. Discrete element analysis of squat silo under eccentric drawing by PFC3D. J. Civ. Eng. Manag. 2016, 33, 43–47. [Google Scholar]
- Feng, Y.; Liu, J. Research on the dynamic evolution of overpressure coefficient of grain unloading into arch in silos. Chin. J. Appl. Mech. 2020, 37, 1036–1042+1388–1389. [Google Scholar]
- Pacheco-Martinez, H.; Van Gerner, H.J.; Ruiz-Suárez, J.C. Storage and drawing of a granular fluid. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2008, 77 Pt 1, 021303. [Google Scholar] [CrossRef]
- Žurovec, D.; Hlosta, J.; Nečas, J.; Zegzulka, J. Monitoring bulk material pressure on bottom of storage using DEM. Open Eng. 2019, 9, 623–630. [Google Scholar] [CrossRef]
- Windows-Yule CR, K.; Mühlbauer, S.; Cisneros, L.T.; Nair, P.; Marzulli, V.; Pöschel, T. Janssen effect in dynamic particulate systems. Phys. Rev. E 2019, 100, 022902. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; An, X.; Wu, Y.; Qian, Q. DEM modeling on stress profile and behavior in granular matter. Powder Technol. 2018, 323, 149–154. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, E.; Wang, S. Characteristics of ore contact force in ellipsoid ore drawing law. J. Min. Saf. Eng. 2021, 38, 1210–1219. [Google Scholar]
- Zhou, J. Study on the natural resting angle of loose ores. Nonferrous Met. 1983, 35, 24–29. [Google Scholar]
- Kejin, L.; Zhaoran, X.; Shihao, W. Discrete element-based simulation of silo storage unloading arch formation process and silo wall pressure distribution. Trans. Chin. Soc. Agric. Eng. 2018, 34, 277–285. [Google Scholar]
- Wensrich, C.M.; Katterfeld, A. Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 2012, 217, 409–417. [Google Scholar] [CrossRef]
- Iwashita, K.; Oda, M. Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 1998, 124, 285–292. [Google Scholar] [CrossRef]
- Chen, S.; Xia, Z.; Feng, F.; Yin, D. Numerical study on strength and failure characteristics of rock samples with different hole defects. Bull. Eng. Geol. Environ. 2021, 80, 1523–1540. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, L.S.; Wei, L.C.; Jia, J.Z.; Zhou, S.G. Numerical study of the influence of multiple parameters on hang-ups: Insight from a structural and mechanical characteristics analysis. Rock Mech. Rock Eng. 2024. [Google Scholar] [CrossRef]
- Di Renzo, A.; Napolitano, E.S.; Di Maio, F.P. Coarse-grain DEM modelling in fluidized bed simulation: A Review. Processes 2021, 9, 279. [Google Scholar] [CrossRef]
- Bierwisch, C.; Kraft, T.; Riedel, H.; Moseler, M. Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. J. Mech. Phys. Solids 2009, 57, 10–31. [Google Scholar] [CrossRef]
- Radl, S.; Radeke, C.; Khinast, J.G.; Sundaresan, S. Parcel-based approach for the simulation of gas-particle flows. In Proceedings of the 8th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, Trondheim, Norway, 21–23 June 2011. [Google Scholar]
- Chen, X. Extension of classical Janssen loose mass pressure theory and its application in mining engineering. Chin. J. Geotech. Eng. 2010, 32, 315–319. [Google Scholar]
- Raúl, L.C.; Miguel, A.F.; Fernando, L. Experimental study of gravity flow under confined conditions. Int. J. Rock Mech. Min. Sci. 2014, 67, 164–169. [Google Scholar]
- Shi, C.; Zhang, Q.; Wang, S. Numerical simulation techniques and applications of granular flow (PFC5.0). Rock Soil Mech. 2018, 39, 36. [Google Scholar]
- Oda, M. Co-ordination number and its relation to shear strength of granular material. Soils Found. 1977, 17, 29–42. [Google Scholar] [CrossRef]
- Radjai, F.; Wolf, D.E.; Jean, M.; Moreau, J.J. Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 1998, 80, 61. [Google Scholar] [CrossRef]
- Majmudar, T.S.; Behringer, R.P. Contact force measurements and stress-induced anisotropy in granular materials. Nature 2005, 435, 1079–1082. [Google Scholar] [CrossRef]
- Azéma, E.; Radjai, F. Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 2012, 85, 031303. [Google Scholar] [CrossRef]
- Tempone, P.; Landro, M.; Fjær, E. 4D gravity response of compacting reservoirs: Analytical approach. Geophysics. 2012, 77, G45–G54. [Google Scholar] [CrossRef]
- Maiti, R.; Das, G.; Das, P.K. Experiments on eccentric granular drawing from a quasi-two-dimensional silo. Powder Technol. 2016, 301, 1054–1066. [Google Scholar] [CrossRef]
- Cannavacciuolo, A.; Barletta, D.; Donsì, G.; Ferrari, G.; Poletto, M. Arch-Free flow in aerated silo discharge of cohesive powders. Powder Technol. 2009, 191, 272–279. [Google Scholar] [CrossRef]
- Han, G.; Gong, Q.; Zhou, S. Particle flow simulation analysis of micro-mechanism of soil arching effect of friction-type geotechnical materials. Rock Soil Mech. 2013, 34, 1791–1798. [Google Scholar]
Particle size/mm | 5~10 | 10~15 | 15~20 | 20~25 | 25~30 |
Quality Percentage/% | 15 | 25 | 30 | 20 | 10 |
Types | Normal Stiffness/(N/m) | Tangential Stiffness/(N/m) | Ore-Rock Bulk Density/(kg/m3) | Friction Coefficient | Anti-Rotation Friction Coefficient | Particle Size/m | Number of Particles/N |
---|---|---|---|---|---|---|---|
Ore particles | 3.33 × 109 | 3.33 × 109 | 2050 | 0.7 | 0.7 | 0.1~0.6 | 13,468 |
Wall | 3.33 × 109 | 3.33 × 109 | — | 0.65 | — | — | — |
Ore-Drawing Times/Time | Fitting Functional Equation | Fitting Coefficient R2 |
---|---|---|
0 | 0.996 | |
5 | 0.988 | |
10 | 0.987 | |
15 | 0.995 | |
20 | 0.971 |
Region | Measurement Point Number | Number of Overpressure/Time | Maximum Overpressure Factor |
---|---|---|---|
Lower part of the storage section | 1 | 15 | 6.4 |
2 | 0 | 0 | |
3 | 3 | 1.42 | |
4 | 1 | 1.07 | |
Upper part of the storage section | 5 | 1 | 1.16 |
6 | 1 | 1.21 | |
7 | 1 | 1.06 | |
8 | 0 | 0 | |
9 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.; Deng, Z.; Lu, Z.; Ma, C. Study on the Macro-Fine Mechanical Behavior of Ore Flow Based on the Discrete Element Method. Appl. Sci. 2024, 14, 3457. https://doi.org/10.3390/app14083457
Xia Z, Deng Z, Lu Z, Ma C. Study on the Macro-Fine Mechanical Behavior of Ore Flow Based on the Discrete Element Method. Applied Sciences. 2024; 14(8):3457. https://doi.org/10.3390/app14083457
Chicago/Turabian StyleXia, Zhiguo, Zhe Deng, Zengxiang Lu, and Chenglong Ma. 2024. "Study on the Macro-Fine Mechanical Behavior of Ore Flow Based on the Discrete Element Method" Applied Sciences 14, no. 8: 3457. https://doi.org/10.3390/app14083457
APA StyleXia, Z., Deng, Z., Lu, Z., & Ma, C. (2024). Study on the Macro-Fine Mechanical Behavior of Ore Flow Based on the Discrete Element Method. Applied Sciences, 14(8), 3457. https://doi.org/10.3390/app14083457