Prediction of Delayed Surface Subsidence Based on the Improved Knothe-n Model
Abstract
:1. Introduction
2. Numerical Simulation Programme
2.1. Project Overview
2.2. Numerical Simulation
2.3. Numerical Simulation of Delayed Surface Subsidence
3. Knothe-n Time Function Model Improvement
3.1. Knothe-n Time Function
3.2. Knothe-n Segmented Time Function
4. Model Validation Results and Analysis
4.1. Feasibility Verification of the Improved Model
4.2. Delayed Surface Subsidence Predicted by Improved Model
4.3. Analysis of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Zuo, J.; Karakus, M.; Wang, J. Investigation of movement and damage of integral overburden during shallow coal seam mining. Int. J. Rock Mech. Min. Sci. 2019, 117, 63–75. [Google Scholar] [CrossRef]
- Salmi, E.F.; Nazem, M.; Karakus, M. The effect of rock mass gradual deterioration on the mechanism of post-mining subsidence over shallow abandoned coal mines. Int. J. Rock Mech. Min. Sci. 2017, 91, 59–71. [Google Scholar] [CrossRef]
- Hu, Q.F.; Cui, X.M.; Yuan, D.P.; Deng, X.B. Analysis of the formation mechanism and hazards of surface cracks in thick coal seam mining. J. Min. Saf. Eng. 2012, 29, 864–869. [Google Scholar]
- Guo, G.L.; Wang, Y.H.; Ma, Z.G. A new approach to effective control of coal mine subsidence. J. China Univ. Min. Technol. 2004, 2, 6–29. [Google Scholar]
- Can, E.; Mekik, Ç.; Kuşcu, Ş.; Akçın, H. Monitoring deformations on engineering structures in Kozlu Hard Coal Basin. Nat. Hazards 2013, 65, 2311–2330. [Google Scholar] [CrossRef]
- Chen, Q.F.; Niu, W.J.; Liu, Y.Z. Improvement of Knothe model and analysis of dynamic process of rock movement in fill mining. J. China Univ. Min. Technol. 2017, 46, 250–256. [Google Scholar]
- Yang, L.; Dai, H.Y. Reflections on the calculation method of coal mining subsidence in China. Coal Min. 2016, 21, 7–9+102. [Google Scholar]
- Gonzalez-Nicieza, C.; Alvarez-Fernandez, M.I.; Menendez-Diaz, A.; Alvarez-Vigil, A.E. The influence of time on subsidence in the Central Asturian Coalfield. Bull. Eng. Geol. Environ. 2007, 66, 319–329. [Google Scholar] [CrossRef]
- Yu, Q.G.; Zhang, H.X.; Deng, W.N. Research on dynamic surface subsidence model based on Boltzmann function. Coal Min. 2017, 22, 52–54+44. [Google Scholar]
- Wang, X.H.; Hu, H.F.; Lian, X.G. Dynamic subsidence prediction based on Weibull time series function and negative exponential method. Met. Min. 2015, 8, 158–162. [Google Scholar]
- Xu, H.Z.; Li, X.H. Surface subsidence time function based on logistic growth model. Geotech. Mech. 2005, 26 (S1), 151–153. [Google Scholar]
- Knothe, S. Time influence on formation of a subsidence surface. Arch. Gor. I Hut. 1952, 1, 1. (In Polish) [Google Scholar]
- Chang, Z.Q.; Wang, J.Z. A study on the subsidence time function of the surface point—Improved Knott’s time function. J. Rock Mech. Eng. 2003, 9, 1496–1499. [Google Scholar]
- Zhang, B.; Cui, X.M. Optimization of segmented Knothe time function model for dynamic prediction of mining subsidence. Geotech. Mech. 2017, 38, 541–548+556. [Google Scholar]
- Zhang, B.; Cui, X.M.; Zhao, Y.L.; Li, C.Y. Optimized segmented Knothe time function parameterization method. J. Coal 2018, 43, 3379–3386. [Google Scholar]
- Miao, W.; An, S.K.; Xu, Y.F.; Xue, B.; Zhao, D.R.; Li, H. Optimization and application of mining subsidence prediction model with segmented Knothe time function[J/OL]. Met. Min. 2024, 1–9. [Google Scholar]
- Liu, Y.C.; Cao, S.G.; Liu, Y.B. Improved Knothe surface subsidence time function model. Surv. Mapp. Sci. 2009, 34, 16–17+31. [Google Scholar]
- Zhang, X.R.; Liu, Y.C. Knothe time function and its application in dynamic surface subsidence. Geol. Mapp. 2012, 28, 14–16+20. [Google Scholar]
- Jin, Y.T.; Hu, H.F.; Cai, Y.F. Research on the parameters of SBAS-InSAR mine subsidence monitoring and dynamic prediction model. Coal Technol. 2023, 42, 30–34. [Google Scholar]
- Zhang, L.L.; Cheng, H.; Yao, Z.S.; Wang, X.J. Improvement of Knothe surface dynamic settlement prediction model and its parameter analysis. J. Geotech. Eng. 2023, 45, 1036–1044. [Google Scholar]
- Wang, B.; Xu, J.; Xuan, D. Time function model of dynamic surface subsidence assessment of grout-injected overburden of a coal mine. Int. J. Rock Mech. Min. Sci. 2018, 104, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K. Research on time function modeling of dynamic subsidence of mining surface. Coal Min. 2017, 22, 68–70. [Google Scholar]
- Xu, D.M. Application of FLAC3D numerical simulation technology in the characterization of overburden transport and damage. Shandong Coal Sci. Technol. 2013, 1, 73–75. [Google Scholar]
Types of Rock | Density ρ (g/cm3) | Elastic Modulus E (MPa) | Poisson’s Ratio v | Bulk Modulus K (MPa) | Shear Modulus G (MPa) | Cohesion c (MPa) | Friction Angle φ (°) | Tensile Strength T (MPa) |
---|---|---|---|---|---|---|---|---|
Shale | 2.6 | 23,500 | 0.28 | 17,803.00 | 9179.69 | 15.0 | 42 | 5.0 |
Coal Seam | 1.3 | 5000 | 0.32 | 4629.63 | 1893.93 | 1.8 | 30 | 0.1 |
Mudstone | 2.5 | 14,000 | 0.29 | 11,111.11 | 5426.36 | 3.2 | 37 | 1.2 |
Date Monitoring Point | February | March | April | May | June | July |
---|---|---|---|---|---|---|
WC1 | −16.4 | −16.5 | −16.7 | −16.8 | −17 | −17 |
WC2 | −17.5 | −17.8 | −18 | −18 | −18 | −18.1 |
WC3 | −16.4 | −16.6 | −16.7 | −17 | −17 | −17 |
WC4 | −16.8 | −17.2 | −17.5 | −17.6 | −17.7 | −18 |
WC5 | −15.9 | −16 | −16.4 | −16.4 | −16.7 | −16.9 |
WC6 | −16.5 | −16.6 | −17.1 | −17.2 | −17.4 | −17.5 |
WC7 | −17.3 | −17.3 | −17.4 | −17.7 | −18 | −18.3 |
WC8 | −17.1 | −17.2 | −17.2 | −17.3 | −17.4 | −17.6 |
WC9 | −16.3 | −16.5 | −16.6 | −16.8 | −16.8 | −17.1 |
Average value | −16.7 | −16.9 | −17.1 | −17.2 | −17.3 | −17.54 |
Date | Model Calculation Results (mm) | Subsidence Rate (mm/month) | Numerical Simulation Results (mm) | Subsidence Rate (mm/month) | Error Ratio |
---|---|---|---|---|---|
July 2015– July 2018 | 75.5 | 2.12 | 78.2 | 2.17 | 3.4% |
February 2018– July 2018 | 8.56 | 1.4 | 8.8 | 1.5 | 2.7% |
Date | Model Calculation Results (mm) | Subsidence Rate (mm/month) | Monitoring of Subsidence Data (mm) | Subsidence Rate (mm/month) | Error Ratio |
---|---|---|---|---|---|
July 2015– July 2018 | 18.09 | 0.47 | 17.5 | 0.49 | 3.2% |
February 2018– July 2018 | 0.79 | 0.13 | 0.84 | 0.14 | 5.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Tang, C.; Liu, X.; Dong, Y. Prediction of Delayed Surface Subsidence Based on the Improved Knothe-n Model. Appl. Sci. 2024, 14, 3742. https://doi.org/10.3390/app14093742
Dong J, Tang C, Liu X, Dong Y. Prediction of Delayed Surface Subsidence Based on the Improved Knothe-n Model. Applied Sciences. 2024; 14(9):3742. https://doi.org/10.3390/app14093742
Chicago/Turabian StyleDong, Jianhui, Chengqian Tang, Xiao Liu, and Yangdan Dong. 2024. "Prediction of Delayed Surface Subsidence Based on the Improved Knothe-n Model" Applied Sciences 14, no. 9: 3742. https://doi.org/10.3390/app14093742
APA StyleDong, J., Tang, C., Liu, X., & Dong, Y. (2024). Prediction of Delayed Surface Subsidence Based on the Improved Knothe-n Model. Applied Sciences, 14(9), 3742. https://doi.org/10.3390/app14093742