Numerical Coupling between a FEM Code and the FVM Code OpenFOAM Using the MED Library
Abstract
:1. Introduction
2. The Numerical Platform Environment
2.1. FEM Code: FEMuS
2.2. FVM Code: OpenFOAM
2.3. The MED and MEDCoupling Library from the SALOME Platform
3. Coupling Procedure through the MED Library
Coupling Algorithm
Algorithm 1: Coupling Algorithm |
|
4. Numerical Results
4.1. Buoyant-Driven Cavity
4.1.1. Volume Data Transfer Algorithm
4.1.2. Simulations Results
4.2. Conjugate Heat Transfer (CHT)
4.2.1. Boundary Data Transfer Algorithm
4.2.2. Simulations Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drikakis, D.; Frank, M.; Tabor, G. Multiscale computational fluid dynamics. Energies 2019, 12, 3272. [Google Scholar] [CrossRef]
- Groen, D.; Zasada, S.J.; Coveney, P.V. Survey of multiscale and multiphysics applications and communities. Comput. Sci. Eng. 2013, 16, 34–43. [Google Scholar] [CrossRef]
- Cordero, M.E.; Uribe, S.; Zárate, L.G.; Rangel, R.N.; Regalado-Méndez, A.; Reyes, E.P. CFD Modelling of Coupled Multiphysics-Multiscale Engineering Cases in Comput. Fluid Dyn.-Basic Instrum. Appl. Sci. 2017, 10, 237–263. [Google Scholar] [CrossRef]
- Jasak, H.; Jemcov, A.; Tukovic, Z. OpenFOAM: A C++ library for complex physics simulations. In Proceedings of the International workshop on coupled methods in numerical dynamics, Dubrovnik, Croatia, 19–21 September 2007; Volume 1000, pp. 1–20. [Google Scholar]
- Angeli, P.E.; Bieder, U.; Fauchet, G. Overview of the TrioCFD code: Main features, VetV procedures and typical applications to nuclear engineering. In Proceedings of the NURETH 16-16th International Topical Meeting on Nuclear Reactor Thermalhydraulics, Chicago, IL, USA, 30 August–4 September 2015. [Google Scholar]
- Archambeau, F.; Méchitoua, N.; Sakiz, M. Code Saturne: A finite volume code for the computation of turbulent incompressible flows-Industrial applications. Int. J. Finite Vol. 2004, 1, 1–62. [Google Scholar]
- Levesque, J. The Code Aster: A product for mechanical engineers; Le Code Aster: Un produit pour les mecaniciens des structures. Epure 1998, 60, 7–20. [Google Scholar]
- Helfer, T.; Michel, B.; Proix, J.M.; Salvo, M.; Sercombe, J.; Casella, M. Introducing the open-source mfront code generator: Application to mechanical behaviours and material knowledge management within the PLEIADES fuel element modelling platform. Comput. Math. Appl. 2015, 70, 994–1023. [Google Scholar] [CrossRef]
- Kirk, B.S.; Peterson, J.W.; Stogner, R.H.; Carey, G.F. libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Eng. Comput. 2006, 22, 237–254. [Google Scholar] [CrossRef]
- Bangerth, W.; Hartmann, R.; Kanschat, G. deal. II—A general-purpose object-oriented finite element library. ACM Trans. Math. Softw. (TOMS) 2007, 33, 24. [Google Scholar] [CrossRef]
- Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.E.; Wells, G. The FEniCS project version 1.5. Arch. Numer. Softw. 2015, 3, 9–23. [Google Scholar]
- Da Vià, R. Development of a computational platform for the simulation of low Prandtl number turbulent flows. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2019. [Google Scholar]
- Barbi, G.; Bornia, G.; Cerroni, D.; Cervone, A.; Chierici, A.; Chirco, L.; Da Vià, R.; Giovacchini, V.; Manservisi, S.; Scardovelli, R. FEMuS-Platform: A numerical platform for multiscale and multiphysics code coupling. In Proceedings of the 9th International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2021, Barcelona, Spain, 14–16 June 2021; International Center for Numerical Methods in Engineering: Catalonia, Spain, 2021; pp. 1–12. [Google Scholar]
- Numeric Platform. Available online: https://github.com/FemusPlatform/NumericPlatform (accessed on 26 April 2024).
- SALOME. 2023. Available online: https://www.salome-platform.org/?page_id=23 (accessed on 26 April 2024).
- Ahrens, J.; Geveci, B.; Law, C.; Hansen, C.; Johnson, C. 36-paraview: An end-user tool for large-data visualization. Vis. Handb. 2005, 717, 50038-1. [Google Scholar]
- Balay, S.; Abhyankar, S.; Adams, M.F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E.M.; Dalcin, L.; Dener, A. PETSc Web Page. 2023. Available online: https://petsc.org/ (accessed on 26 April 2024).
- Chierici, A.; Giovacchini, V.; Manservisi, S. Analysis and numerical results for boundary optimal control problems applied to turbulent buoyant flows. Int. J. Numer. Anal. Model. 2022, 19, 347–368. [Google Scholar]
- Da Vià, R.; Giovacchini, V.; Manservisi, S. A Logarithmic Turbulent Heat Transfer Model in Applications with Liquid Metals for Pr = 0.01–0.025. Appl. Sci. 2020, 10, 4337. [Google Scholar] [CrossRef]
- Chirco, L. On the Optimal Control of Steady Fluid Structure Interaction Systems. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2020. [Google Scholar]
- Cerroni, D. Multiscale Multiphysics Coupling on a Finite Element Platform. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2016. [Google Scholar]
- Ribes, A.; Caremoli, C. Salome platform component model for numerical simulation. In Proceedings of the 31st annual international computer software and applications conference (COMPSAC 2007), Beijing, China, 24–27 July 2007; IEEE: Beijing, China, 2007; Volume 2, pp. 553–564. [Google Scholar]
- de Vahl Davis, G. Natural convection of air in a square cavity: A benchmark numerical solution. Int. J. Numer. Methods Fluids 1983, 3, 249–264. [Google Scholar] [CrossRef]
- Manzari, M. An explicit finite element algorithm for convection heat transfer problems. Int. J. Numer. Methods Heat Fluid Flow 1999, 9, 860–877. [Google Scholar] [CrossRef]
- Massarotti, N.; Nithiarasu, P.; Zienkiewicz, O. Characteristic-based-split (CBS) algorithm for incompressible flow problems with heat transfer. Int. J. Numer. Methods Heat Fluid Flow 1998, 8, 969–990. [Google Scholar] [CrossRef]
- Mayne, D.A.; Usmani, A.S.; Crapper, M. h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem. Int. J. Numer. Methods Heat Fluid Flow 2000, 10, 598–615. [Google Scholar] [CrossRef]
- Wan, D.C.; Patnaik, B.S.V.; Wei, G.W. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numer. Heat Transf. Part B Fundam. 2001, 40, 199–228. [Google Scholar]
- Pangavhane, D.R.; Sawhney, R.; Sarsavadia, P. Design, development and performance testing of a new natural convection solar dryer. Energy 2002, 27, 579–590. [Google Scholar] [CrossRef]
- Fitzgerald, S.D.; Woods, A.W. Transient natural ventilation of a room with a distributed heat source. J. Fluid Mech. 2007, 591, 21–42. [Google Scholar] [CrossRef]
- Espinosa, F.; Avila, R.; Cervantes, J.; Solorio, F. Numerical simulation of simultaneous freezing–melting problems with natural convection. Nucl. Eng. Des. 2004, 232, 145–155. [Google Scholar] [CrossRef]
- John, B.; Senthilkumar, P.; Sadasivan, S. Applied and theoretical aspects of conjugate heat transfer analysis: A review. Arch. Comput. Methods Eng. 2019, 26, 475–489. [Google Scholar] [CrossRef]
- Basak, T.; Anandalakshmi, R.; Singh, A.K. Heatline analysis on thermal management with conjugate natural convection in a square cavity. Chem. Eng. Sci. 2013, 93, 67–90. [Google Scholar] [CrossRef]
- Guermond, J.L.; Minev, P.; Shen, J. An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 2006, 195, 6011–6045. [Google Scholar] [CrossRef]
F | [12] | ||||
---|---|---|---|---|---|
73.639 | 65.186 | 66.789 | 71.908 | 73.241 | |
73.615 | 72.470 | 73.140 | 73.244 | 73.189 | |
73.617 | 73.337 | 73.515 | 73.681 | 73.168 |
F | [23] | [24] | [26] | [27] | ||||
---|---|---|---|---|---|---|---|---|
3.66 | 3.59 | 3.64 | 3.70 | 3.63 | 3.68 | 3.65 | 3.49 | |
16.24 | 16.22 | 16.19 | 16.33 | 16.18 | 16.10 | 16.18 | 16.12 | |
35.70 | 35.71 | 35.75 | 35.80 | 34.81 | 34.00 | 34.77 | 33.39 | |
80.79 | 81.03 | 83.16 | 78.47 | 65.33 | 65.40 | 64.69 | 65.40 |
F | [23] | [24] | [25] | [26] | [27] | ||||
---|---|---|---|---|---|---|---|---|---|
3.69 | 3.60 | 3.68 | 3.73 | 3.68 | 3.73 | 3.69 | 3.70 | 3.69 | |
19.80 | 19.76 | 19.72 | 19.88 | 19.51 | 19.90 | 19.63 | 19.62 | 19.76 | |
73.62 | 73.34 | 73.52 | 73.68 | 68.22 | 70.00 | 68.85 | 68.69 | 70.63 | |
234.80 | 234.66 | 227.41 | 229.06 | 216.75 | 228.00 | 221.60 | 220.83 | 227.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbi, G.; Cervone, A.; Giangolini, F.; Manservisi, S.; Sirotti, L. Numerical Coupling between a FEM Code and the FVM Code OpenFOAM Using the MED Library. Appl. Sci. 2024, 14, 3744. https://doi.org/10.3390/app14093744
Barbi G, Cervone A, Giangolini F, Manservisi S, Sirotti L. Numerical Coupling between a FEM Code and the FVM Code OpenFOAM Using the MED Library. Applied Sciences. 2024; 14(9):3744. https://doi.org/10.3390/app14093744
Chicago/Turabian StyleBarbi, Giacomo, Antonio Cervone, Federico Giangolini, Sandro Manservisi, and Lucia Sirotti. 2024. "Numerical Coupling between a FEM Code and the FVM Code OpenFOAM Using the MED Library" Applied Sciences 14, no. 9: 3744. https://doi.org/10.3390/app14093744
APA StyleBarbi, G., Cervone, A., Giangolini, F., Manservisi, S., & Sirotti, L. (2024). Numerical Coupling between a FEM Code and the FVM Code OpenFOAM Using the MED Library. Applied Sciences, 14(9), 3744. https://doi.org/10.3390/app14093744