Exploring Flexural Strength Variation in Polymeric Materials for Provisional Fixed Prosthetic Structures: Comparative Analysis with and without Reinforcement through Laboratory Experimentation and Statistical Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Groups Categorized According to the Reinforcements of the Test Bodies Were Delineated as Follows
2.1.1. Control Group
2.1.2. Fiberglass Fiber Splint
2.1.3. Polyethylene Thread—Ribbond Regular, Manufactured by Ribbond Inc., USA
2.1.4. Metal Multiwire Triple-Twisted Wire for Splinting, 015″, from Leone S.p.a., Italy
2.1.5. Aesthetic ligature Wire, 012″, from Leone S.p.a., Italy
2.1.6. Glass Filament Fiber Coated with Light-Cured Resin for Dental Use (Interlig from Angelus, Brazil)
2.2. Each Group of Test Specimens, Relative to the Reinforcement (n = 6), Was Further Subdivided into Three Groups of Laboratory Polymers Based on the Type of Activation of the Polymerization Reaction
2.2.1. Trial Bodies Made from Heat-Polymerizing PMMA (Superpont C+B, Spofa Dental, Czech Republic)
2.2.2. Trial Bodies Made from Factory-Polymerized PMMA for Subtractive Fabrication by CAD/CAM (DD Temp MED, Dental Direkt GmbH, Germany)
2.2.3. Experimental Bodies Fabricated from Light-Polymerizing Additive Manufacturing through CAD/CAM (Temporary CB Resin, FormLabs, USA) Were Also Included in the Study
2.3. The Clinical Materials for the Test Specimens Were Exclusively Investigated as Solid Specimens in Three Distinct Groups
2.3.1. Test Bodies Fabricated from Self-Polymerizing PEMA DENTALON Plus (Kulzer, Germany)
2.3.2. The Test Bodies Were Composed of Light-Cured Composite (Revotek LC, GC, Japan)
2.3.3. The Experimental Bodies Were Comprised of Double-Polymerizing TempSpan (Pentron, USA)
2.4. Three-Point Flexural Tests
2.5. Statistical Methods
3. Results
3.1. The Statistical Processing Using the Generalized Linear Models (GMLs) Method Revealed the Influence of Different Types of Reinforcement on the Physico-Mechanical Characteristics of Laboratory and Clinical Test Specimens Made of Dental Composites
- ➢
- Without reinforcement;
- ➢
- Fiberglass thread (Fiber Splint Polydentia One Layer);
- ➢
- Polyethylene thread (Ribbond Regular, 4.0 mm);
- ➢
- Metal multiwire triple-twisted splint wire (Leone, 015″);
- ➢
- Aesthetic ligature wire (Leone S.p.a., 012″);
- ➢
- Fiberglass thread coated with light-cured composite (Interlig, Angelus, 8.5 × 0.2 mm).
3.1.1. Flexural Strength (FS/MPa)
- ➢
- Fiberglass thread (Fiber Splint Polydentia One Layer): 79.65 ± 12.79 MPa;
- ➢
- Polyethylene thread (Ribbond Regular 4.0 mm): 79.25 ± 11.80 MPa;
- ➢
- Metal multiwire triple-twisted splinting wire (Leone, 015″): 75.35 ± 11.09 MPa;
- ➢
- Aesthetic ligature wire (Leone S.p.a., 012″): 69.05 ± 9.45 MPa.
3.1.2. Maximum Force before Fracture (Fmax/N)
- ➢
- Fiberglass thread (Fiber Splint Polydentia One Layer): 21.24 ± 3.41 N;
- ➢
- Polyethylene thread (Ribbond Regular, 4.0 mm): 21.13 ± 4.49 N;
- ➢
- Metal multiwire triple-twisted wire for splinting (Leone, 015″): 19.69 ± 4.89 N;
- ➢
- Aesthetic ligature wire (Leone S.p.a., 012″): 18.21 ± 2.53 N.
3.1.3. Modulus of Elasticity (E/MPa)
- ➢
- Fiberglass thread (Fiber Splint Polydentia One Layer): 8823.77 ± 1456 MPa;
- ➢
- Polyethylene thread (Ribbond Regular, 4.0 mm): 8159.59 ± 1446 MPa;
- ➢
- Fiberglass thread coated with light-cured composite (Interlig, Angelus, 8.5 × 0.2 mm): 8076.73 ± 972 MPa;
- ➢
- Metal multiwire triple-twisted splinting wire (Leone, 015″): 7796.42 ± 999 MPa;
- ➢
- Aesthetic Ligature Wire (Leone S.p.a., 012″): 7230.31 ± 647 MPa.
3.2. Influence of Polymer Material on Physico-Mechanical Characteristics
- ➢
- Heat-cured PMMA (Superpont C+B, Spofa Dental, Czech Republic);
- ➢
- Factory polymerized for subtractive fabrication via CAD/CAM PMMA (DD temp MED, Dental Direkt GmbH, Germany);
- ➢
- Light-cured for additive manufacturing via CAD/CAM (Temporary CB Resin, FormLabs, USA);
- ➢
- Self-polymerizing PEMA (DENTALON plus, Kulzer, Germany);
- ➢
- Light-cured composite (Revotek LC, GC, Japan);
- ➢
- Light- and self-cured (dual-cured) (TempSpan, Pentron, USA).
3.2.1. Flexural Strength (FS/MPa)
- ➢
- Light-curedfor additive manufacturing via CAD/CAM Temporary CB Resin, FormLabs, USA (80.11 ± 14.69);
- ➢
- Heat-cured PMMA (Superpont C+B, Spofa Dental, Czech Republic) (73.13 ± 17.08);
- ➢
- Light- and self-cured (dual-cured) TempSpan, Pentron, USA (55.13 ± 5.43);
- ➢
- Self-polymerizing PEMA (DENTALON plus, Kulzer, Germany) (40.16 ± 4.59).
3.2.2. Maximum Force before Fracture (Fmax/N)
- ➢
- Light-cured for additive manufacturing via CAD/CAM (Temporary CB Resin, FormLabs, USA) (21.36 ± 3.92);
- ➢
- Heat-cured PMMA (Superpont C+B, Spofa Dental, Czech Republic) (19.50 ± 4.56);
- ➢
- Light- and self-cured (dual-cured) (TempSpan, Pentron, USA) (14.70 ± 0.95);
- ➢
- Self-polymerizing PEMA (DENTALON plus, Kulzer, Germany) (12.68 ± 1.47).
3.2.3. Modulus of Elasticity (E/MPa)
- ➢
- Light-cured for additive manufacturing via CAD/CAM (Temporary CB Resin, FormLabs, USA) (7875.25 ± 353);
- ➢
- Factory polymerized material (CAD/CAM PMMA, DD temp MED, Dental Direkt GmbH, Germany) (7631.24 ± 352);
- ➢
- Light- and self-cured (Dual-cured) (TempSpan, Pentron, USA) (6940.81 ± 83.50);
- ➢
- Self-polymerizing PEMA DENTALON plus (Kulzer, Germany) (5758.24 ± 83.30).
3.3. Influence of the Method of Storage on Physico-Mechanical Characteristics
- ➢
- Storage at room temperature;
- ➢
- Storage in distilled water at room temperature.
3.4. Summary of the Main Trends
- ➢
- Factory-polymerized PMMA material for subtractive CAD/CAM fabrication (DD temp MED, Dental Direkt GmbH, Germany): this material exhibited the best mechanical properties with a flexural strength (FS) of 83.56 ± 15.35 MPa, maximum force before fracturing (Fmax) of 22.29 ± 4.09 N, and an elastic modulus (E) of 7631.24 ± 352 MPa.
- ➢
- Light-cured material for additive manufacturing by CAD/CAM (Temporary CB Resin, FormLabs, USA): this material demonstrated strong mechanical properties, with a flexural strength of 80.11 ± 14.69 MPa, maximum force before fracturing of 21.36 ± 3.92 N, and an elastic modulus of 7875.25 ± 353 MPa.
- ➢
- Heat-polymerizing PMMA (Superpont C+B by Spofa Dental, Czech Republic): despite being slightly lower in performance compared to the top two materials, it still showed notable mechanical properties, with a flexural strength of 73.13 ± 17.08 MPa, maximum force before fracturing of 19.50 ± 4.56 N, and an elastic modulus of 8823.12 ± 358 MPa.
- Glass thread coated with light-cured composite (Interlig, 8.5 × 0.2 mm) (Angelus, Brazil) (FS = 82.82 ± 16.76 MPa; Fmax = 22.10 ± 4.49 N; E = 8076.73 ± 972);
- Fiber Splint One Layer (Polydentia, Switzerland) (FS = 79.65 ± 12.79 MPa; Fmax = 21.24 ± 3.41 N; E = 8823.77 ± 1456);
- Polyethylene thread (Ribbond Regular) (Ribbond Inc., USA) 4.0 mm (FS = 79.25 ± 11.80 MPa; Fmax = 21.13 ± 4.49 N; E = 8159.59 ± 1446).
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, J.; Wassell, R. Provisional Restorations (Part 1). Br. Dent. J. 2023, 234, 805–809. [Google Scholar] [CrossRef] [PubMed]
- AhmadAbadi, M.N.; Goharifar, A.; Mahabadi, M. The effect of fabrication methods (conventional, computer-aided design/computer-aided manufacturing milling, three-dimensional printing) and material type on the fracture strength of provisional restorations. Dent. Res. J. 2023, 20, 86. [Google Scholar] [CrossRef]
- Fondriest, J.F. Using Provisional Restorations to Improve Results in Complex Aesthetic Restorative Cases. Pract. Proced. Aesthet. Dent. 2006, 18, 217–223. [Google Scholar] [PubMed]
- Field, J.; Wassell, R. Provisional Restorations (Part 2). Br. Dent. J. 2023, 235, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Psarri, C.; Kourtis, S. Effect of Fiber-reinforcement on the Strength of Polymer Materials for Provisional Restorations: An In Vitro Study. J. Esthet. Restor. Dent. 2020, 32, 433–440. [Google Scholar] [CrossRef]
- Alt, V.; Hannig, M.; Wöstmann, B.; Balkenhol, M. Fracture Strength of Temporary Fixed Partial Dentures: CAD/CAM versus Directly Fabricated Restorations. Dent. Mater. 2011, 27, 339–347. [Google Scholar] [CrossRef]
- Balkenhol, M.; Köhler, H.; Orbach, K.; Wöstmann, B. Fracture Toughness of Cross-Linked and Non-Cross-Linked Temporary Crown and Fixed Partial Denture Materials. Dent. Mater. 2009, 25, 917–928. [Google Scholar] [CrossRef]
- Keys, W.F.; Keirby, N.; Ricketts, D.N.J. Provisional Restorations—A Permanent Problem? Dent. Update 2016, 43, 908–912, 914. [Google Scholar] [CrossRef]
- Christensen, G.J. Avoiding Pulpal Death during Fixed Prosthodontic Procedures. J. Am. Dent. Assoc. 2002, 133, 1563–1564. [Google Scholar] [CrossRef]
- Jamel, R.S.; Yahya, E.M. Interim Restorations in Fixed Prosthodontics: A Literature Review. Al-Rafidain Dent. J. 2022, 22, 203–219. [Google Scholar] [CrossRef]
- Lui, J.L.; Setcos, J.C.; Phillips, R.W. Temporary Restorations: A Review. Oper. Dent. 1986, 11, 103–110. [Google Scholar] [PubMed]
- Patras, M.; Naka, O.; Doukoudakis, S.; Pissiotis, A. Management of Provisional Restorations’ Deficiencies: A Literature Review. J. Esthet. Restor. Dent. 2011, 24, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Rangelov, S. Contemporary Requirements to Fixed Interim Prosthetic Constructions. Probl. Dent. Med. 2021, 47, 13–16. [Google Scholar]
- Geerts, G.A.; Overturf, J.-H.; Oberholzer, T.G. The Effect of Different Reinforcements on the Fracture Toughness of Materials for Interim Restorations. J. Prosthet. Dent. 2008, 99, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Murthy, H.B.; Shaik, S.; Sachdeva, H.; Khare, S.; Haralur, S.B.; Roopa, K.T. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin—An In Vitro Study. J. Int. Oral Health 2015, 7, 71–79. [Google Scholar] [PubMed]
- Alla, R.K.; Sajjan, S.; Alluri, V.R.; Ginjupalli, K.; Upadhya, N. Influence of Fiber Reinforcement on the Properties of Denture Base Resins. J. Biomater. Nanobiotechnol. 2013, 04, 91–97. [Google Scholar] [CrossRef]
- Astudillo-Rubio, D.; Delgado-Gaete, A.; Bellot-Arcís, C.; Montiel-Company, J.M.; Pascual-Moscardó, A.; Almerich-Silla, J.M. Mechanical Properties of Provisional Dental Materials: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0193162. [Google Scholar]
- Balkenhol, M.; Mautner, M.C.; Ferger, P.; Wöstmann, B. Mechanical Properties of Provisional Crown and Bridge Materials: Chemical-Curing versus Dual-Curing Systems. J. Dent. 2008, 36, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.T.; Choi, J. Comparison Analysis of Fracture Load and Flexural Strength of Provisional Restorative Resins Fabricated by Different Methods. J. Korean Acad. Prosthodont. 2019, 57, 225–231. [Google Scholar] [CrossRef]
- Digholkar, S.; Madhav, V.N.; Palaskar, J. Evaluation of the Flexural Strength and Microhardness of Provisional Crown and Bridge Materials Fabricated by Different Methods. J. Indian Prosthodont. Soc. 2016, 16, 328–334. [Google Scholar] [CrossRef]
- Hamza, T.A.; Rosenstiel, S.F.; Elhosary, M.M.; Ibraheem, R.M. The Effect of Fiber Reinforcement on the Fracture Toughness and Flexural Strength of Provisional Restorative Resins. J. Prosthet. Dent. 2004, 91, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Hamza, T.A.; Johnston, W.M.; Schricker, S.R. Effect of Polyhedral Silsesquioxane (POSS) on the Flexural Strength and Color of Interim Materials. J. Prosthet. Dent. 2014, 112, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Idrissi, H.A.; Annamma, L.M.; Sharaf, D.; Jaghsi, A.A.; Abutayyem, H. Comparative Evaluation of Flexural Strength of Four Different Types of Provisional Restoration Materials: An In Vitro Pilot Study. Children 2023, 10, 380. [Google Scholar] [CrossRef] [PubMed]
- Jo, L.J.; Shenoy, K.K.; Shetty, S. Flexural Strength and Hardness of Resins for Interim Fixed Partial Dentures. Indian J. Dent. Res. 2011, 22, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Nejatidanesh, F.; Momeni, G.; Savabi, O. Flexural Strength of Interim Resin Materials for Fixed Prosthodontics. J. Prosthodont. 2009, 18, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Pantea, M.; Ciocoiu, R.C.; Greabu, M.; Ripszky Totan, A.; Imre, M.; Țâncu, A.M.C.; Sfeatcu, R.; Spînu, T.C.; Ilinca, R.; Petre, A.E. Compressive and Flexural Strength of 3D-Printed and Conventional Resins Designated for Interim Fixed Dental Prostheses: An In Vitro Comparison. Materials 2022, 15, 3075. [Google Scholar] [CrossRef] [PubMed]
- Poonacha, V.; Poonacha, S.; Salagundi, B.; Rupesh, P.L.; Raghavan, R. In Vitro Comparison of Flexural Strength and Elastic Modulus of Three Provisional Crown Materials Used in Fixed Prosthodontics. J. Clin. Exp. Dent. 2013, 5, e212–e217. [Google Scholar] [CrossRef] [PubMed]
- Yanikoğlu, N.D.; Bayindir, F.; Kürklü, D.; Beşir, B. Flexural Strength of Temporary Restorative Materials Stored in Different Solutions. Open J. Stomatol. 2014, 4, 291–298. [Google Scholar] [CrossRef]
- Zortuk, M.; Ozdemir, E.; Aguloglu, S. Evaluating the Fracture Strength of Three Different Provisional Crowns. J. Int. Dent. Med. Res. 2010, 3, 25–28. [Google Scholar]
- Yao, J.; Li, J.; Wang, Y.; Huang, H. Comparison of the Flexural Strength and Marginal Accuracy of Traditional and CAD/CAM Interim Materials Before and After Thermal Cycling. J. Prosthet. Dent. 2014, 112, 649–657. [Google Scholar] [CrossRef]
- Zhekov, Y.; Firkova, E.; Vlahova, A.; Todorov, G.; Yankov, S.; Georgiev, Z.; Aleksandrov, S. CAD/CAM Fiber-Reinforced Composite Adhesive Splint. Int. J. Sci. Res. 2020, 9, 206–209. [Google Scholar]
- Rayyan, M.M.; Aboushelib, M.; Sayed, N.M.; Ibrahim, A.; Jimbo, R. Comparison of Interim Restorations Fabricated by CAD/CAM with Those Fabricated Manually. J. Prosthet. Dent. 2015, 114, 414–419. [Google Scholar] [CrossRef]
- Alp, G.; Murat, S.; Yilmaz, B. Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers. J. Prosthodont. 2019, 28, e491–e495. [Google Scholar] [CrossRef]
- Rangelov, S. Reinforcement of materials for provisional constructions—laboratory and clinical research. Ph.D. Thesis, Medical University of Sofia, Sofia, Bulgaria, 2023. [Google Scholar]
- Al-Dwairi, Z.N.; Tahboub, K.Y.; Baba, N.Z.; Goodacre, C.J. A Comparison of the Flexural and Impact Strengths and Flexural Modulus of CAD/CAM and Conventional Heat-Cured Polymethyl Methacrylate (PMMA). J. Prosthodont. 2020, 29, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Abad-Coronel, C.; Carrera, E.; Mena Córdova, N.; Fajardo, J.I.; Aliaga, P. Comparative Analysis of Fracture Resistance between CAD/CAM Materials for Interim Fixed Prosthesis. Materials 2021, 14, 7791. [Google Scholar] [CrossRef]
- Mai, H.N.; Lee, K.B.; Lee, D.H. Fit of Interim Crowns Fabricated Using Photopolymer-Jetting 3D Printing. J. Prosthet. Dent. 2017, 118, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Bae, E.J.; Jeong, I.D.; Kim, W.C.; Kim, J.H. A Comparative Study of Additive and Subtractive Manufacturing for Dental Restorations. J. Prosthet. Dent. 2017, 118, 187–193. [Google Scholar] [CrossRef]
- Jasim, A.; Lateef, E.; Alwan Zeid, A. Comparison of fracture resistance of cad/cam interim bridge and conventional interim resin bridge. Indian J. Public Health Res. Dev. 2019, 10, 3098. [Google Scholar] [CrossRef]
- Jain, S.; Sayed, M.E.; Shetty, M.; Alqahtani, S.M.; Al Wadei, M.H.D.; Gupta, S.G.; Othman, A.A.A.; Alshehri, A.H.; Alqarni, H.; Mobarki, A.H.; et al. Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis. Polymers 2022, 14, 2691. [Google Scholar] [CrossRef]
- Vlahova, A.; Zlatev, S. CAD/CAM Technologies in Prosthetic Dentistry; Bulgari: Plovdiv, Bulgaria, 2021; pp. 13–14. [Google Scholar]
Group | N | Subgroup | N | Storage | N |
---|---|---|---|---|---|
Laboratory dense test specimens | 180 | Heat-cured PMMA Superpont C+B (Spofa Dental, Czech Republic) | 60 | Dry | 30 |
Aqua dest. | 30 | ||||
CAD-CAM prefabricated PMMA (DD temp MED, Dental Direkt GmbH, Germany) | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
CAD-CAM printing resin (Temporary CB Resin, FormLabs, USA) | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
Clinical
dense test specimens | 180 | Self-polymerizing PEMA DENTALON plus (Kulzer, Germany) | 60 | Dry | 30 |
Aqua dest. | 30 | ||||
Light-polymerizing
composite (Revotek LC, GC, Japan) | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
Dual-polymerizing composite TempSpan (Pentron, USA) | 60 | Dry | 30 | ||
Aqua dest. | 30 |
Reinforcement | N | Polymer | N | Storage | N |
---|---|---|---|---|---|
Glass Fiber (Fiber Splint One Layer)
(Polydentia, Switzerland) | 180 | HC—PMMA | 60 | Dry | 30 |
Aqua dest. | 30 | ||||
CAD-CAM—PMMA | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
CAD-CAM resin | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
Polyethylene thread Ribbond Regular 4.0 mm (Ribbond Inc., USA) | 180 | HC—PMMA | 60 | Dry | 30 |
Aqua dest. | 30 | ||||
CAD-CAM—PMMA | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
CAD-CAM resin | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
Triple-stranded chrome–cobalt wire for splinting 015″ (Leone S.p.a., Italy) | 180 | HC—PMMA | 60 | Dry | 30 |
Aqua dest. | 30 | ||||
CAD-CAM—PMMA | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
CAD-CAM resin | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
Aesthetic ligature wire 012″ (Leone S.p.a., Italy) | 180 | HC—PMMA | 60 | Dry | 30 |
Aqua dest. | 30 | ||||
CAD-CAM—PMMA | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
CAD-CAM resin | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
Glass Fiber coated with light-cured composite (Interlig, 8.5 × 0.2 mm) (Angelus, Brazil) | 180 | HC—PMMA | 60 | Dry | 30 |
Aqua dest. | 30 | ||||
CAD-CAM PMMA | 60 | Dry | 30 | ||
Aqua dest. | 30 | ||||
CAD-CAM resin | 60 | Dry | 30 | ||
Aqua dest. | 30 |
Physico-Mechanical Characteristics | Storage at Room Temperature Estimated Marginal Mean (SD) | Storage in Distilled Water at Room Temperature Estimated Marginal Mean (SD) | p-Value |
---|---|---|---|
Flexural strength (FS/MPa) | 75.06 (17.96) | 73.87 (19.23) | 0.226 |
Maximum force before fracture (Fmax/N) | 20.017 (4.80) | 19.70 (5.13) | 0.229 |
Modulus of elasticity (E/MPa) | 7855 (1530) | 7689 (1522) | 0.064 |
Main Trends | Reinforcement |
---|---|
Flexural strength (FS/MPa) and maximum strength before fracture (Fmax/N) | |
Highest values |
|
Second largest values |
|
Elasticity (E/MPa) | Reinforcement |
Highest values |
|
Second largest values |
|
Main Trends | Polymeric Material |
---|---|
Flexural strength (FS/MPa) and maximum strength before fracture (Fmax/N) | |
Highest values |
|
Second largest values |
|
Elasticity (E/MPa) | Polymeric material |
Highest values |
|
Second largest values |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimova-Gabrovska, M.; Uzunov, T.; Gusiyska, A.; Shopova, D.; Taneva, I.; Gerdzhikov, I.; Rangelov, S. Exploring Flexural Strength Variation in Polymeric Materials for Provisional Fixed Prosthetic Structures: Comparative Analysis with and without Reinforcement through Laboratory Experimentation and Statistical Evaluation. Appl. Sci. 2024, 14, 3923. https://doi.org/10.3390/app14093923
Dimova-Gabrovska M, Uzunov T, Gusiyska A, Shopova D, Taneva I, Gerdzhikov I, Rangelov S. Exploring Flexural Strength Variation in Polymeric Materials for Provisional Fixed Prosthetic Structures: Comparative Analysis with and without Reinforcement through Laboratory Experimentation and Statistical Evaluation. Applied Sciences. 2024; 14(9):3923. https://doi.org/10.3390/app14093923
Chicago/Turabian StyleDimova-Gabrovska, Mariana, Todor Uzunov, Angela Gusiyska, Dobromira Shopova, Iva Taneva, Ivan Gerdzhikov, and Stefan Rangelov. 2024. "Exploring Flexural Strength Variation in Polymeric Materials for Provisional Fixed Prosthetic Structures: Comparative Analysis with and without Reinforcement through Laboratory Experimentation and Statistical Evaluation" Applied Sciences 14, no. 9: 3923. https://doi.org/10.3390/app14093923
APA StyleDimova-Gabrovska, M., Uzunov, T., Gusiyska, A., Shopova, D., Taneva, I., Gerdzhikov, I., & Rangelov, S. (2024). Exploring Flexural Strength Variation in Polymeric Materials for Provisional Fixed Prosthetic Structures: Comparative Analysis with and without Reinforcement through Laboratory Experimentation and Statistical Evaluation. Applied Sciences, 14(9), 3923. https://doi.org/10.3390/app14093923