A Near-Ultraviolet Photodetector Based on the TaC: Cu/4 H Silicon Carbide Heterostructure
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Fabrication of the Device
2.3. Characterization
3. Results and Discussions
3.1. Morphological Properties
3.2. Electrical and Optical Properties
3.3. Photoreponse Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PDs | photodetectors (PDs) |
SiC | silicon carbide |
TaC | tantalum carbide |
Cu | Copper |
GaAs | gallium arsenide |
UV | ultraviolet |
GaN | gallium nitride |
ZnO | zinc oxide |
AlGaN | aluminum gallium nitride |
Ga2O3 | gallium oxide |
TMC | transition metal carbides |
RF | radio frequency |
DC | direct current |
SEM | scanning electron microscope |
FIB | focused ion beam |
EDX | energy-dispersive X-ray spectroscopy |
SE | spectroscopic ellipsometry |
NUV | near-ultraviolet |
FDTD | Finite-Difference Time-Domain |
References
- Liu, J.; Chen, Z.; Wu, C.; Yu, X.; Yu, X.; Chen, C.; Li, Z.; Qiao, Q.; Cao, Y.; Zhou, Y. Recent advances in antimony selenide photodetectors. Adv. Mater. 2024, 36, 2406028. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, J.; Liu, M.; Ma, X.; Zhang, F. Narrowband Organic Photodetectors: From Fundamentals to Prospects. Adv. Opt. Mater. 2024, 12, 2401087. [Google Scholar] [CrossRef]
- Liu, X.; Li, F.; Xu, M.; Shen, T.; Yang, Z.; Fan, W.; Qi, J. High response, self-powered photodetector based on the monolayer MoS2/P–Si heterojunction with asymmetric electrodes. Langmuir 2018, 34, 14151–14157. [Google Scholar] [CrossRef] [PubMed]
- Gogurla, N.; Sinha, A.K.; Santra, S.; Manna, S.; Ray, S.K. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep. 2014, 4, 6483. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, W.; Xu, X.; Cai, J.; Yang, W.; Fang, X. Self-powered dual-color UV–green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions. J. Phys. Chem. Lett. 2019, 10, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, L.; Feng, Y.; Wang, Z.; Wang, Z.L. Comprehensive pyro-phototronic effect enhanced ultraviolet detector with ZnO/Ag schottky junction. Adv. Funct. Mater. 2019, 29, 1807111. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, R.; Pan, C.; Li, Z.; Yang, J.; Yi, F.; Wang, Z.L. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun. 2015, 6, 8401. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Kuznia, J.N.; Olson, D.T.; Van Hove, J.M.; Blasingame, M.; Reitz, L.F. High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers. Appl. Phys. Lett. 1992, 60, 2917–2919. [Google Scholar] [CrossRef]
- Chuang, R.W.; Chang, S.J.; Chiou, Y.Z.; Lu, C.Y.; Lin, T.K.; Lin, Y.C.; Kuo, C.F.; Chang, H.M. Gallium nitride metal-semiconductor-metal photodetectors prepared on silicon substrates. J. Appl. Phys. 2007, 102, 073110. [Google Scholar] [CrossRef]
- Ouyang, W.; Chen, J.; Shi, Z.; Fang, X. Self-powered UV photodetectors based on ZnO nanomaterials. Appl. Phys. Rev. 2021, 8, 031315. [Google Scholar] [CrossRef]
- Luo, Y.; Dong, Z.; Chen, Y.; Zhang, Y.; Lu, Y.; Xia, T.; Wang, L.; Li, S.; Zhang, W.; Xiang, W.; et al. Self-powered NiO@ ZnO-nanowire-heterojunction ultraviolet micro-photodetectors. Opt. Mater. Express 2019, 9, 2775–2784. [Google Scholar] [CrossRef]
- Tang, X.; Li, K.H.; Zhao, Y.; Sui, Y.; Liang, H.; Liu, Z.; Liao, C.H.; Babatain, W.; Lin, R.; Wang, C.; et al. Quasi-Epitaxial Growth of β-Ga2O3-Coated Wide Band Gap Semiconductor Tape for Flexible UV Photodetectors. ACS Appl. Mater. Interfaces 2021, 14, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.N.; Lu, Y.J.; Yang, X.; Tian, Y.Z.; Gao, C.J.; Sun, J.L.; Dong, L.; Zhong, F.; Hu, W.D.; Shan, C.X. Diamond-based all-carbon photodetectors for solar-blind imaging. Adv. Opt. Mater. 2018, 6, 1800068. [Google Scholar] [CrossRef]
- Cai, Q.; You, H.; Guo, H.; Wang, J.; Liu, B.; Xie, Z.; Chen, D.; Lu, H.; Zheng, Y.; Zhang, R. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci. Appl. 2021, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Peelaers, H.; Varley, J.B.; Speck, J.S.; Van de Walle, C.G. Structural and electronic properties of Ga2O3-Al2O3 alloys. Appl. Phys. Lett. 2018, 112, 242101. [Google Scholar] [CrossRef]
- Wei, T.C.; Tsai, D.S.; Ravadgar, P.; Ke, J.J.; Tsai, M.L.; Lien, D.H.; Huang, C.-Y.; Horng, R.-H.; He, J.-H. See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 112–117. [Google Scholar]
- Zhang, C.; Liu, K.; Ai, Q.; Sun, X.; Chen, X.; Yang, J.; Zhu, Y.; Cheng, Z.; Li, B.; Liu, L.; et al. High-performance fully transparent Ga2O3 solar-blind UV photodetector with the embedded indium–tin–oxide electrodes. Mater. Today Phys. 2023, 33, 101034. [Google Scholar] [CrossRef]
- Shen, Y.; Jones, A.H.; Yuan, Y.; Zheng, J.; Peng, Y.; VanMil, B.; Olver, K.; Sampath, A.V.; Parker, C.; Opila, E. Near ultraviolet enhanced 4H-SiC Schottky diode. Appl. Phys. Lett. 2019, 115, 261101. [Google Scholar] [CrossRef]
- Yang, T.; Chen, S.; Li, X.; Xu, X.; Gao, F.; Wang, L.; Chen, J.; Yang, W.; Hou, X.; Fang, X. High-performance SiC nanobelt photodetectors with long-term stability against 300 °C up to 180 days. Adv. Funct. Mater. 2019, 29, 1806250. [Google Scholar] [CrossRef]
- Guo, X.; Beck, A.L.; Li, X.; Campbell, J.C.; Emerson, D.; Sumakeris, J. Study of reverse dark current in 4H-SiC avalanche photodiodes. IEEE J. Quantum Electron. 2005, 41, 562–567. [Google Scholar]
- Zhou, X.; Li, J.; Lu, W.; Wang, Y.; Song, X.; Yin, S.; Tan, X.; Lü, Y.; Guo, H.; Gu, G.; et al. Large-area 4H-SiC avalanche photodiodes with high gain and low dark current for visible-blind ultraviolet detection. Chin. Opt. Lett. 2018, 16, 060401. [Google Scholar] [CrossRef]
- Odebowale, A.; As’ham, K.; Hattori, H.T.; Miroshnichenko, A.E. Design and optimization of near-field thermophotovoltaic systems using deep learning. Phys. Rev. Appl. 2024, 21, 064031. [Google Scholar] [CrossRef]
- Odebowale, A.A.; Berhe, A.M.; Hattori, H.T.; Miroshnichenko, A.E. Modeling and Analysis of a Radiative Thermal Memristor. Appl. Sci. 2024, 14, 2633. [Google Scholar] [CrossRef]
- Odebowale, A.; As’Ham, K.; Berhe, A.M.; Alim, N.; Hattori, H.T.; Miroshnichenko, A.E. Near-field radiative thermal rectification assisted by Bi2Se3 sheet. Int. Commun. Heat Mass Transf. 2024, 157, 107707. [Google Scholar] [CrossRef]
- Hondongwa, D.; Olasov, L.; Daly, B.; King, S.; Bielefeld, J. Thermal conductivity and sound velocity measurements of plasma enhanced chemical vapor deposited a-SiC: H thin films. Thin Solid Film. 2011, 519, 7895–7898. [Google Scholar] [CrossRef]
- Xin, X.; Hu, J.; Alexandove, P.; Zhao, J.H.; VanMil, B.L.; Gaskill, D.K.; Lew, K.K.; Myers-Ward, R.; Eddy, C. High-performance 4H-SiC single photon avalanche diode operating at solar blind wavelength. Adv. Photon Count. Tech. II 2007, 6771, 256–263. [Google Scholar]
- Prasai, D.; John, W.; Weixelbaum, L.; Krüger, O.; Wagner, G.; Sperfeld, P.; Nowy, S.; Friedrich, D.; Winter, S.; Weiss, T. Highly reliable silicon carbide photodiodes for visible-blind ultraviolet detector applications. J. Mater. Res. 2013, 28, 33–37. [Google Scholar]
- Hu, J.; Xin, X.; Li, X.; Zhao, J.H.; VanMil, B.L.; Lew, K.K.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K. 4H-SiC visible-blind single-photon avalanche diode for ultraviolet detection at 280 and 350 nm. IEEE Trans. Electron Devices 2008, 55, 1977–1983. [Google Scholar] [CrossRef]
- Luo, Z. Crystallography of SiC/MgAl2O4/Al interfaces in a pre-oxidized SiC reinforced SiC/Al composite. Acta Mater. 2006, 54, 47–58. [Google Scholar] [CrossRef]
- Yan, F.; Xin, X.; Aslam, S.; Zhao, Y.; Franz, D.; Zhao, J.H.; Weiner, M. 4H-SiC UV photo detectors with large area and very high specific detectivity. IEEE J. Quantum Electron. 2004, 40, 1315–1320. [Google Scholar]
- Hattori, H.T.; Akter, S.; Al-Ani, I.A.M.; Li, Z. Near Ultraviolet Photoresponse of a Silicon Carbide and Tantalum Boride Heterostructure. IEEE Photonics J. 2023, 15, 1–7. [Google Scholar] [CrossRef]
- Lien, W.-C.; Tsai, D.-S.; Lien, D.-H.; Senesky, D.G.; He, J.-H.; Pisano, A.P. 4H–SiC Metal–Semiconductor–Metal Ultraviolet Photodetectors in Operation of 450 °C. IEEE Electron Device Lett. 2012, 33, 1586–1588. [Google Scholar] [CrossRef]
- Cedillos-Barraza, O.; Manara, D.; Boboridis, K.; Watkins, T.; Grasso, S.; Jayaseelan, D.D.; Konings, R.J.M.; Reece, M.J.; Lee, W.E. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system. Sci. Rep. 2016, 6, 37962. [Google Scholar] [CrossRef] [PubMed]
- Di, C.; Yan, X.; Yang, Y.; Ye, W.; Zhao, M.; Li, D. Wear behaviors and high-temperature oxidation resistance properties of tantalum carbide layer. Ceram. Int. 2021, 47, 32766–32774. [Google Scholar] [CrossRef]
- Xiang, H.; Xu, Y.; Zhang, L.; Cheng, L. Synthesis and microstructure of tantalum carbide and carbon composite by liquid precursor route. Scr. Mater. 2006, 55, 339–342. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, Y.; Mao, K.; Feng, Y.; Wen, Q.; Riedel, R. Single-source-precursor synthesis and phase evolution of SiC-TaC-C ceramic nanocomposites containing core-shell structured TaC@ C nanoparticles. J. Adv. Ceram. 2020, 9, 320–328. [Google Scholar] [CrossRef]
- Tamura, H.; Konoue, M.; Sawaoka, A. Zirconium boride and tantalum carbide coatings sprayed by electrothermal explosion of powders. J. Therm. Spray Technol. 1997, 6, 463–468. [Google Scholar] [CrossRef]
- Li, S.; Wei, C.; Cheng, J.; Zhang, L.; Gao, P.; Wang, P.; Zhou, L.; Wen, G. Crack tolerant TaC-SiC ceramics prepared by spark plasma sintering. Ceram. Int. 2020, 46, 25230–25235. [Google Scholar] [CrossRef]
- Liu, X.-L.; Dai, Y.; Wang, Z.-J.; Wu, J. Research progress on tantalum carbide coatings oncarbon materials. New Carbon Mater. 2021, 36, 1049–1059. [Google Scholar] [CrossRef]
- Cedillos-Barraza, O.; Grasso, S.; Al Nasiri, N.; Jayaseelan, D.D.; Reece, M.J.; Lee, W.E. Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC–HfC fabricated by spark plasma sintering. J. Eur. Ceram. Soc. 2016, 36, 1539–1548. [Google Scholar] [CrossRef]
- Farhadizadeh, A.R.; Ghomi, H. Mechanical, structural, and thermodynamic properties of TaC-ZrC ultra-high temperature ceramics using first principle methods. Mater. Res. Express 2020, 7, 036502. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, D.; Liu, R.; Li, D. Designing high-entropy ceramics via incorporation of the bond-mechanical behavior correlation with the machine-learning methodology. Cell Rep. Phys. Sci. 2021, 2, 100640. [Google Scholar] [CrossRef]
- Mehdikhani, B.; Bakhshi, S. Synthesis and spark plasma sintering of TaC–TaB2 nanocomposites. J. Optoelectron. Adv. Mater. 2014, 16, 1311–1316. [Google Scholar]
- Sautereau, J.; Mocellin, A. Sintering behaviour of ultrafine NbC and TaC powders. J. Mater. Sci. 1974, 9, 761–771. [Google Scholar] [CrossRef]
- Yeh, C.; Liu, E. Combustion synthesis of tantalum carbides TaC and Ta2C. J. Alloys Compd. 2006, 415, 66–72. [Google Scholar] [CrossRef]
- Jang, T.; Porter, L.M.; Rutsch, G.W.M.; Odekirk, B. Tantalum carbide ohmic contacts to n-type silicon carbide. Appl. Phys. Lett. 1999, 75, 3956–3958. [Google Scholar] [CrossRef]
- Jang, T.; Odekirk, B.; Madsen, L.D.; Porter, L.M. Thermal stability and contact degradation mechanisms of TaC ohmic contacts with W/WC overlayers to n-type 6H SiC. J. Appl. Phys. 2001, 90, 4555–4559. [Google Scholar] [CrossRef]
- Nakamura, D.; Narita, T.; Kimura, T. Resistive heater element made of highly durable TaC-coated graphite for high-temperature and highly corrosive processes: Application to MOCVD GaN epitaxial growth. Jpn. J. Appl. Phys. 2019, 58, 075509. [Google Scholar] [CrossRef]
- Sani, E.; Mercatelli, L.; Meucci, M.; Balbo, A.; Silvestroni, L.; Sciti, D. Compositional dependence of optical properties of zirconium, hafnium and tantalum carbides for solar absorber applications. Sol. Energy 2016, 131, 199–207. [Google Scholar] [CrossRef]
- Li, M.; Zinkle, S.J. Physical and Mechanical Properties of Copper and Copper Alloys. In Comprehensive Nuclear Materials; Konings, R.J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4, pp. 667–690. [Google Scholar]
- Yan, X.; Chang, C.; Dong, D.; Gao, S.; Ma, W.; Liu, M.; Liao, H.; Yin, S. Microstructure and mechanical properties of pure copper manufactured by selective laser melting. Mater. Sci. Eng. A 2020, 789, 139615. [Google Scholar] [CrossRef]
- Guschlbauer, R.; Momeni, S.; Osmanlic, F.; Körner, C. Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties. Mater. Charact. 2018, 143, 163–170. [Google Scholar] [CrossRef]
- Shanmugasundaram, T.; Murty, B.; Sarma, V.S. Development of ultrafine grained high strength Al–Cu alloy by cryorolling. Scr. Mater. 2006, 54, 2013–2017. [Google Scholar] [CrossRef]
- Callcut, V. High Copper Alloys-High Strength Coppers for Demanding Electrical Applications; Copper Development Association: McLean, VA, USA, 2006. [Google Scholar]
- Davis, J.R. Copper and Copper Alloys; ASM International: Almere, The Netherlands, 2001. [Google Scholar]
- Su, X.L.; Jia, Y.; Wang, J.B.; Xu, J.; He, X.H.; Fu, C.; Liu, S.T. Preparation, dielectric property and microwave absorption property of Cu doped SiC nanopowder by combustion synthesis. Adv. Appl. Ceram. 2014, 113, 262–266. [Google Scholar] [CrossRef]
- Singh, S.; Sinha, A.; Zunke, R.H.; Kumar, A.; Singh, D. Double layer microwave absorber based on Cu dispersed SiC composites. Adv. Powder Technol. 2018, 29, 2019–2026. [Google Scholar] [CrossRef]
- Cui, Y.; Fung, K.H.; Xu, J.; Ma, H.; Jin, Y.; He, S.; Fang, N.X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 2012, 12, 1443–1447. [Google Scholar] [CrossRef]
- Wang, S.; Zhan, M.; Wang, G.; Xuan, H.; Zhang, W.; Liu, C.; Xu, C.; Liu, Y.; Wei, Z.; Chen, X. 4H-SiC: A new nonlinear material for midinfrared lasers. Laser Photon. Rev. 2013, 7, 831–838. [Google Scholar] [CrossRef]
- Wu, D.; Guo, J.; Wang, C.; Ren, X.; Chen, Y.; Lin, P.; Zeng, L.; Shi, Z.; Li, X.J.; Shan, C.X.; et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, S.; Lv, Z.; Ma, Z.; Yu, C.; Feng, Z.; Chan, M. Self-driven WSe2 photodetectors enabled with asymmetrical van der Waals contact interfaces. NPJ 2D Mater. Appl. 2020, 4, 46. [Google Scholar] [CrossRef]
- Tang, R.; Li, G.; Jiang, Y.; Gao, N.; Li, J.; Li, C.; Huang, K.; Kang, J.; Wang, T.; Zhang, R. Ga2O3/GaN heterostructural ultraviolet photodetectors with exciton-dominated ultranarrow response. ACS Appl. Electron. Mater. 2021, 4, 188–196. [Google Scholar] [CrossRef]
- Chen, Y.; Su, L.; Jiang, M.; Fang, X. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection. J. Mater. Sci. Technol. 2022, 105, 259–265. [Google Scholar] [CrossRef]
- Meng, J.; Li, Q.; Huang, J.; Pan, C.; Li, Z. Self-powered photodetector for ultralow power density UV sensing. Nano Today 2022, 43, 101399. [Google Scholar] [CrossRef]
- Wang, K.; Wang, H.; Chen, C.; Li, W.; Wang, L.; Hu, F.; Gao, F.; Yang, W.; Wang, Z.; Chen, S. High-performance ultraviolet photodetector based on single-crystal integrated self-supporting 4H-SiC nanohole arrays. ACS Appl. Mater. Interfaces 2023, 15, 23457–23469. [Google Scholar] [CrossRef]
- Li, L.; Wei, G.; Zhu, P.; Su, Y.; Ding, L.; Ma, S.; Xu, B.; Wang, Y.; Yang, Y. Self-powered graphene/4H-SiC nanowire array-based ultraviolet photodetectors with fast response time and low dark current for promising wireless ultraviolet communication. Appl. Mater. Today 2024, 37, 102114. [Google Scholar] [CrossRef]
- He, F.; Jiao, J.; Li, Z.; Yao, L.; Ji, R.; Wang, D.; Hu, Y.; Huang, W.; Li, C.; Lin, G.; et al. Resonant-cavity-enhanced 4H-SiC thin film MSM UV photodetectors on SiO2/Si substrates. J. Phys. D Appl. Phys. 2024, 57, 245107. [Google Scholar] [CrossRef]
Structure | Wavelength (nm) | Responsivity (mA/W) | Dark Current (mA) | Response Time (s) | Reference |
---|---|---|---|---|---|
6H SiC/TaB | 405 | 2.9 × 103 | 500 at −1 V | 260.5 × 10−9 | [31] |
PANI ZnO film | 380 at −3 V | 37.0 | 0.8 × 10−10 | 50 × 10−6 | [62] |
Ga2O3/GaN | 360 | 5 × 102 at 2 V 2.6 × 106 at 16 V | - | 0.1 | [64] |
Pt/Ni at nanowire/ZnO film | 312 | 17.0 | - | 2.9 | [11] |
Au/ZnO | 325 | 0.485 | 2 × 10−3 | 12 × 10−3 | [63] |
B-doped 3C-SiC nanobelts | 405 | 6.37 × 108 at 5 V | 4.37 × 10−4 | 50 × 10−3 | [19] |
Ag-4H-SiC nanohole-Ag | 375 | 824 | - | 1.022 | [65] |
2D graphene/1D 4H-SiC NWAs | 365 | 9.27 at 0 V 9.27 × 103 at 5 V | 4 × 10−9 | 24.89 × 10−3 | [66] |
4H-SiC/SiO2/Si (100) | 280 | 29 | 1.6 × 103 | - | [67] |
TaC: Cu/4H n-type SiC | 405 | 1.1 at −1.75 V | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdo, S.; As’ham, K.; Odebowale, A.A.; Akter, S.; Abdulghani, A.; Al Ani, I.A.M.; Hattori, H.; Miroshnichenko, A.E. A Near-Ultraviolet Photodetector Based on the TaC: Cu/4 H Silicon Carbide Heterostructure. Appl. Sci. 2025, 15, 970. https://doi.org/10.3390/app15020970
Abdo S, As’ham K, Odebowale AA, Akter S, Abdulghani A, Al Ani IAM, Hattori H, Miroshnichenko AE. A Near-Ultraviolet Photodetector Based on the TaC: Cu/4 H Silicon Carbide Heterostructure. Applied Sciences. 2025; 15(2):970. https://doi.org/10.3390/app15020970
Chicago/Turabian StyleAbdo, Salah, Khalil As’ham, Ambali Alade Odebowale, Sanjida Akter, Amer Abdulghani, Ibrahim A. M. Al Ani, Haroldo Hattori, and Andrey E. Miroshnichenko. 2025. "A Near-Ultraviolet Photodetector Based on the TaC: Cu/4 H Silicon Carbide Heterostructure" Applied Sciences 15, no. 2: 970. https://doi.org/10.3390/app15020970
APA StyleAbdo, S., As’ham, K., Odebowale, A. A., Akter, S., Abdulghani, A., Al Ani, I. A. M., Hattori, H., & Miroshnichenko, A. E. (2025). A Near-Ultraviolet Photodetector Based on the TaC: Cu/4 H Silicon Carbide Heterostructure. Applied Sciences, 15(2), 970. https://doi.org/10.3390/app15020970