Numerical Simulation of Oil Pipeline Leakage Diffusion in Dashagou Yellow River Crossing Section
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Dashagou
2.2. Research Methods
3. Geometry of Computational Area
4. Results and Discussion
4.1. Resistance Coefficient Analysis
4.2. Apparent Flow Rate Analysis
4.3. 24 h Simulation Results and Analysis
4.4. Analysis of Groundwater Solute Transport
4.4.1. Analysis of Benzene Migration and Diffusion
4.4.2. Analysis of Crude Oil Migration and Diffusion
4.5. Surface Water Oil Spill Simulation Analysis
4.5.1. Simulation and Analysis of Surface Water Oil Spill from Crude Oil Leakage
4.5.2. Simulation and Analysis of Surface Water Oil Spill from Diesel Oil Leakage
4.6. Uncertainty Aspects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varjani, J.S.; Upasani, N.V. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresour. Technol. 2016, 221, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.Q.; Chang, Y.C.; Zong, Y.K.; Ge, Y.J. Research on the application of bioremediation technology in petroleum-polluted soil. Heilongjiang Environ. J. 2024, 37, 151–153. [Google Scholar]
- Li, Y.; Wang, T.; Wang, D.; Li, H.S. Enhanced microbial bioremediation of petroleum hydrocarbons-contaminated soil. Environ. Prot. Chem. Ind. 2018, 38, 349–352. [Google Scholar]
- Lou, W.L. Analysis on Leakage Causes and Detection Methods of Oil and Gas Long Distance Pipelines; Volkswagen Standardization: Beijing, China, 2022; pp. 183–185. [Google Scholar]
- Shen, Y. Study on the Behavior Characteristics of Petroleum Containment in the Soil and Rhizoremediation. Ph.D. Thesis, Chang’an University, Xi’an, China, 2012. [Google Scholar]
- Li, Z.P.; Liu, Y.; Zhao, G.Z.; Liu, S.K.; Liu, W.H. LNAPL migration processes based on time-lapse electrical resistivity tomography. J. Contam. Hydrol. 2023, 259, 104260. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.X.; Ma, J.J.; Wang, B.T.; Liu, Y.L.; Lin, J.C. Analysis and evaluation of ecological environment impact of petroleum development engineering. Environ. Sci. Technol. 2004, 27, 64–65. [Google Scholar]
- Cai, W.T.; Zhang, A.W.; Zhang, M.; Liu, J.W. Comparative experimental study on sampling methods of petroleum polluted groundwater. Earth Sci. Front. 2014, 21, 168–179. [Google Scholar]
- Liu, Y.T.; Liu, D.J. The Research Progress on the Leakage of the Ground Oil Pipeline. J. Liaoning Shihua Univ. 2019, 39, 76–82. [Google Scholar]
- Cheng, L.Q.; Zhao, P.; Ma, Y. The Research on hazards and prevention measures of oil leakage. China Pet. Chem. Ind. Stand. Qual. 2018, 38, 97–98. [Google Scholar]
- Yuan, H.L.; Yang, J.S.; Wang, Z.S.; Li, B.Z.; Zhang, L.; Lin, R.Z. Microorganism screening for petroleum degradation and its degrading characteristics. China Environ. Sci. 2003, 23, 157–161. [Google Scholar]
- Lu, X.J.; Guo, S.H.; Sun, Q.; Liang, C.H. Current Situation of Remediating Techniques of Petroleum Contaminated Soil and Its Prospects. J. Shenyang Agric. Univ. 2003, 34, 63–67. (In Chinese) [Google Scholar]
- Qin, Y. The Current situation and remediation technology of soil oil pollution in eastern Gansu. J. Longdong Univ. 2010, 21, 64–66. [Google Scholar]
- Qin, Y.G.; Li, X.Q.; Chen, X.L.; Chen, Y.G.; Dong, G.; Liu, F.; Wang, Y.; Leng, C.; Zhu, S.; Liu, C. Soil oil pollution hazard and bioremediation technology in Yellow River Delta coastal wetland. Hubei Agric. Sci. 2011, 50, 3924–3928. [Google Scholar]
- Kang, J.Z.; Kang, W.H.; Shi, M.C. Petroleum contaminated soil remediation technologies research present situation and future. J. Resour. Sect. Environ. Prot. 2021, 18–19. [Google Scholar]
- Zhan, Y. The Hazards of Soil Oil Pollution in China and Countermeasures against it. Environ. Pollut. Control. 2008, 91–93+96. [Google Scholar]
- Zhang, X. Research on the hazards of soil heavy metal pollution and remediation technology. China Resour. Neutralization Util. 2019, 37, 89–90+93. [Google Scholar]
- Fei, Y.H.; Liu, Y.C.; Li, Y.; Bao, X.; Zhang, P. Prospect of groundwater pollution remediation methods and technologies in China. Geol. China 2022, 49, 420–434. [Google Scholar]
- Chen, Q.N.; Zhang, L.; Miao, Y.; Wang, S.; Shen, J.N. The Research progress of in-situ aeration remediation technology for petroleum pollution in shallow groundwater. Environ. Prot. Sci. 2020, 46, 30–34. [Google Scholar]
- Zheng, L. Study on remediation techniques of oil-contaminated soil. J. Chem. Manag. 2023, 58–61. [Google Scholar]
- Zhang, X. Level of petroleum contaminated soil remediation technologies. J. Shanxi Work. Lancet 2023, 226–227+232. [Google Scholar]
- Li, J.; Hu, J.; Ma, W.M.; Wang, P.; Zheng, H.; Lu, R. Petroleum contaminated soil remediation technologies research progress. J. Ecol. Tuit. 2024, 43, 2502–2512. [Google Scholar]
- Wang, Y.J.; Wang, S. River Pollution Impacts of Oil Pipeline Leakage Based on Grey Correlation Method. Environ. Sci. Manag. 2024, 49, 180–184. [Google Scholar]
- Wang, X.Y. Numerical simulation study of the leakage and diffusion law of the underwater crude oil pipeline. Petrochem. Saf. Environ. Prot. Technol. 2018, 50–53+7–8. [Google Scholar]
- Gu, X.H.; Li, J.Z.; Li, T.F.; Tang, H.H.; Liu, X.H. Based on dynamic kernel independent component statistics of oil pipeline leak detection. J. Instrum. Meters 2017, 38, 166–173. [Google Scholar]
- Zhao, L.Q.; Wang, J.L.; Yu, T.; Gou, W.H. A detection method for slow leakage of oil pipelines based on second generation wavelet transform and multistage hypothesis test. Acta Pet. Sin. 2012, 33, 898–903. [Google Scholar]
- Li, J.H.; Sun, Z.C.; Cui, L.; Jia, X. Change point detection based on new information theory and its application in leakage monitoring of long distance pipeline. J. Autom. 2006, 32, 462–469. [Google Scholar]
- Liu, W.; Liu, H. Research on Automatic Identification for the Leakage Signal of Petroleum Pipeline. Sens. Transducers 2013, 21, 147–152. [Google Scholar]
- Okpare, O.A.; Anyasi, I.F.; Ebegba, D. Oil Pipeline Leak Detection and Localisation Using Wireless Sensor Networks. Curr. J. Appl. Sci. Technol. 2018, 32, 1–9. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Y.; Wu, C.; Luo, F.; Lin, Z.; Naidu, R. Rapid on-site detection of underground petroleum pipeline leaks and risk assessment using portable gas chromatography-mass spectrometry and solid phase microextraction. J. Chromatogr. A 2023, 1696, 463980. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, G.; More, Y.; Sam, J. Integrated Cloud Cockpit: A viable approach to surveillance and detection of leaks in oil pipelines. EAI Endorsed Trans. Cloud Syst. 2019, 5, e4. [Google Scholar] [CrossRef]
- Liu, E.; Zhou, L.; Tang, P.; Kou, B.; Li, X.; Lu, X. Numerical Analysis of Leakage and Diffusion Characteristics of In-Situ Coal Gas with Complex Components. Energies 2024, 17, 4694. [Google Scholar] [CrossRef]
- Liu, W.H.; Zhang, H.P.; Zhu, H. The objective of this study is to characterize the response of resistivity in different contaminated media to varying contamination concentrations. J. North China Univ. Water Resour. Electr. Power (Nat. Sci. Ed.) 2024, 1–8. [Google Scholar]
- Guo, Y.H.; Zhang, D.W.; Qi, Y.M.; Lin, W.L. A study of light nonaqueous phase liquid transport in low-permeability clays based on high density electrical resistivity tomography. Chin. J. Environ. Eng. 2024, 18, 261–269. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Qiu, M.; Zhao, G.; Jia, M.; An, J.; Guo, X.; Lin, D.; Tian, Y.; Zhou, J. Numerical Simulation of Oil Pipeline Leakage Diffusion in Dashagou Yellow River Crossing Section. Appl. Sci. 2025, 15, 974. https://doi.org/10.3390/app15020974
Liu S, Qiu M, Zhao G, Jia M, An J, Guo X, Lin D, Tian Y, Zhou J. Numerical Simulation of Oil Pipeline Leakage Diffusion in Dashagou Yellow River Crossing Section. Applied Sciences. 2025; 15(2):974. https://doi.org/10.3390/app15020974
Chicago/Turabian StyleLiu, Shaokang, Mingyang Qiu, Guizhang Zhao, Menghan Jia, Jie An, Xi Guo, Dantong Lin, Yangsheng Tian, and Jiangtao Zhou. 2025. "Numerical Simulation of Oil Pipeline Leakage Diffusion in Dashagou Yellow River Crossing Section" Applied Sciences 15, no. 2: 974. https://doi.org/10.3390/app15020974
APA StyleLiu, S., Qiu, M., Zhao, G., Jia, M., An, J., Guo, X., Lin, D., Tian, Y., & Zhou, J. (2025). Numerical Simulation of Oil Pipeline Leakage Diffusion in Dashagou Yellow River Crossing Section. Applied Sciences, 15(2), 974. https://doi.org/10.3390/app15020974