Statistical Modeling of NaCl and FeSO4 Pretreatment Effect on Refractory Copper Ore Leaching
Abstract
:1. Introduction
MnO2 + 2Fe+2(aq) + 4H+(aq)→Mn+2(aq) + 2Fe+3(aq) + 2H2O(l)
Mn2O3(s) + 2Fe+2(aq) + 6H+(aq)→2Mn+2(aq) + 2Fe+3(aq) + 3H2O(l)
2. Materials and Methods
2.1. Ore Sample
2.2. Leaching Column Tests
2.3. Statistical Modeling
- -
- Sample mass: 3.0 kg;
- -
- Water: 0.3 L;
- -
- Washed water: 6.1 L.
3. Results and Discussion
3.1. Exploratory Analysis
3.2. Analysis of the Impact of Each Factor on the Response
3.3. Multiple Regression Modeling of Sulfation
3.4. Response Optimization
4. Conclusions
- The study successfully modeled complex sulfation dynamics associated with the pretreatment of copper ores with black oxides, utilizing multivariate nonlinear regression models;
- The experimental design and response surface methodology proved valuable tools for analyzing sulfation behavior in regards to variations in independent variables;
- An exploratory analysis, validated by main effects analysis, revealed that the relationships between the independent variables—analytical acid consumption (AAC), NaCl, and FeSO4—are directly proportional to sulfation across the entire sampled domain;
- Time was found to have a statistically significant effect only within the 24–48 h variation, with no significance observed in other comparisons;
- Analytical acid consumption exhibited a consistent positive gradient for sulfation throughout the domain, maintaining statistical significance at all levels sampled;
- While the presence of NaCl was statistically significant, the substantial effect was noticed when comparing the tests without chloride and with the maximum addition of NaCl;
- No statistically significant differences were detected among the levels of FeSO4 sampled;
- The regression model developed to represent sulfation demonstrated a beneficial statistical fit, with a marginal difference between the fitted and predicted coefficients of determination, indicating its reliability as a predictive tool;
- The model optimization identified optimum sulfation values around 60 h, with an analytical acid consumption of 60%, 90 g of NaCl, and 42 g of FeSO4.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dold, B.; Pinget, M.-C.; Fontboté, L. Genesis of the Exotic Chrysocolla—“Copper Pitch/Wad”—Atacamite/Brochantite Ore at the Exótica (Mina Sur) Deposit, Chuquicamata, Chile. Miner. Depos. 2023, 58, 569–591. [Google Scholar] [CrossRef]
- Kahou, Z.S.; Brichau, S.; Poujol, M.; Duchêne, S.; Campos, E.; Leisen, M.; d’Abzac, F.-X.; Riquelme, R.; Carretier, S. First U-Pb LA-ICP-MS in Situ Dating of Supergene Copper Mineralization: Case Study in the Chuquicamata Mining District, Atacama Desert, Chile. Miner. Depos. 2021, 56, 239–252. [Google Scholar] [CrossRef]
- Leybourne, M.I.; Cameron, E.M. Source, Transport, and Fate of Rhenium, Selenium, Molybdenum, Arsenic, and Copper in Groundwater Associated with Porphyry–Cu Deposits, Atacama Desert, Chile. Chem. Geol. 2008, 247, 208–228. [Google Scholar] [CrossRef]
- Mote, T.I.; Brimhall, G.H.; Tidy-Finch, E.; Muller, G.; Carrasco, P. Application of Mass-Balance Modeling of Sources, Pathways, and Sinks of Supergene Enrichment to Exploration and Discovery of the Quebrada Turquesa Exotic Copper Orebody, El Salvador District, Chile. Econ. Geol. 2001, 96, 367–386. [Google Scholar] [CrossRef]
- Hayes, T.S.; Brown, J.G.; Sutley, S.J.; Whelan, J.F. Geology and Rock-Water Geochemistry of Exotic Copper Deposits, Ferricretes, and Manganocretes Associated with Porphyry Copper Deposits in Arizona, New Mexico, and Sonora; Society of Economic Geologists: Littleton, CO, USA, 2009. [Google Scholar] [CrossRef]
- Menzies, A.; Campos, E.; Hernández, V.; Sola, S.; Riquelme, R.; Barraza, M. Understanding Exotic-Cu Mineralisation: Part II—Characterisation of Black Copper (Cobre Negro) Ore. In Proceedings of the 13th SGA Biennial Meeting, Nancy, France, 24–27 August 2015. [Google Scholar]
- Pincheira, M.; Dagnino, A.; Kelm, U.; Helle, S. Copper Pitch y Copper Wad”: Contraste Entre Las Fases Presentes En Las Cabezas y En Los Ripios En Pruebas de Lixiviación de Materiales de Mina Sur, Chuquicamata. In Proceedings of the Abstr, X Congreso Geológico Chileno, Concepción, Chile, 6–10 October 2003. [Google Scholar]
- Patricio, C.C.; Gonzalo, R.S. Oxide Mineralization at the Radomiro Tomic Porphyry Copper Deposit, Northern Chile. Econ. Geol. 2001, 96, 387–400. [Google Scholar] [CrossRef]
- Cameron, E.M.; Leybourne, M.I.; Palacios, C. Atacamite in the Oxide Zone of Copper Deposits in Northern Chile: Involvement of Deep Formation Waters? Miner. Depos. 2007, 42, 205–218. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Supergene Oxidized and Enriched Porphyry Copper and Related Deposits; Society of Economic Geologists: Littleton, CO, USA, 2005. [Google Scholar] [CrossRef]
- Torres, D.; Pérez, K.; Trigueros, E.; Jeldres, R.I.; Salinas-Rodríguez, E.; Robles, P.; Toro, N. Reducing-Effect of Chloride for the Dissolution of Black Copper. Metals 2020, 10, 123. [Google Scholar] [CrossRef]
- Contreras, Y. Estudio de Lixiviación de Óxidos Sintéticos de Cu-Fe-Mn Como Base Para Explicar El Comportamiento de Los Óxidos Negros; Universidad de Concepción: Concepción, Chile, 2019. [Google Scholar]
- Zhou, X.; Ma, Y.; Liu, X.; Tang, J.; Zhou, C.; Guo, L.; Yang, J. Synergistic Leaching Mechanism of Chloride Ions for Extracting Manganese Completely from Manganese Carbonate Ores. J. Environ. Chem. Eng. 2021, 9, 104918. [Google Scholar] [CrossRef]
- Pérez, K.; Toro, N.; Robles, P.A.; Galleguillos-Madrid, F.M.; Gálvez, E.D.; González-Sanz, F.J.; Marino, E.; Castillo, J.; Jamett, I.A.; Hernández, P.C. Extraction of Cobalt and Manganese from Ferromanganese Crusts Using Industrial Metal Waste through Leaching. Metals 2024, 14, 1044. [Google Scholar] [CrossRef]
- Sinha, M.K.; Purcell, W. Reducing Agents in the Leaching of Manganese Ores: A Comprehensive Review. Hydrometallurgy 2019, 187, 168–186. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, C.; Liu, R.; Xie, Z.; Liu, Z.; Cen, S.; Tao, C.; Guo, S. Leaching Kinetics of Manganese from Pyrolusite Using Pyrite as a Reductant under Microwave Heating. Sep. Purif. Technol. 2021, 277, 119472. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, C.Y. Manganese Metallurgy Review. Part I: Leaching of Ores/Secondary Materials and Recovery of Electrolytic/Chemical Manganese Dioxide. Hydrometallurgy 2007, 89, 137–159. [Google Scholar] [CrossRef]
- Sinha, M.K.; Purcell, W.; Van Der Westhuizen, W.A. Recovery of Manganese from Ferruginous Manganese Ore Using Ascorbic Acid as Reducing Agent. Miner. Eng. 2020, 154, 106406. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Naik, P.K.; Das, S.C. Leaching of Manganese from Low-Grade Manganese Ore Using Oxalic Acid as Reductant in Sulphuric Acid Solution. Hydrometallurgy 2001, 62, 157–163. [Google Scholar] [CrossRef]
- Benavente, O.; Hernández, M.C.; Melo, E.; Ardiles, L.; Quezada, V.; Zepeda, Y. Copper Extraction from Black Copper Ores through Modification of the Solution Potential in the Irrigation Solution. Metals 2019, 9, 1339. [Google Scholar] [CrossRef]
- Quezada, V.; Benavente, O.; Beltrán, C.; Díaz, D.; Melo, E.; García, A. Dissolution of Black Copper Oxides from a Leaching Residue. Metals 2020, 10, 1012. [Google Scholar] [CrossRef]
- Benavente, O.; Hernández, M.C.; Melo, E.; Núñez, D.; Quezada, V.; Zepeda, Y. Copper Dissolution from Black Copper Ore under Oxidizing and Reducing Conditions. Metals 2019, 9, 799. [Google Scholar] [CrossRef]
- Quezada, V.; Roca, A.; Benavente, O.; Cruells, M.; Melo, E. The Effects of Sulphuric Acid and Sodium Chloride Agglomeration and Curing on Chalcopyrite Leaching. Metals 2021, 11, 873. [Google Scholar] [CrossRef]
- Hernández, P.C.; Dupont, J.; Herreros, O.O.; Jimenez, Y.P.; Torres, C.M. Accelerating Copper Leaching from Sulfide Ores in Acid-Nitrate-Chloride Media Using Agglomeration and Curing as Pretreatment. Minerals 2019, 9, 250. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Hemmat Esfe, M.; Hatami, H.; Kiannejad Amiri, M.; Alidoust, S.; Toghraie, D.; Esfandeh, S. Multi-Objective Optimization of Viscosity and Thermal Conductivity of TiO2/BioGlycol-Water Nanofluids with Sorting Non-Dominated Genetic Algorithm II Coupled with Response Surface Methodology. Mater. Today Commun. 2023, 36, 106718. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Amoozadkhalili, F.; Toghraie, D. Comprehensive Study of MWCNT and CuO/SAE50 Hybrid Nanofluid with Experimental Method and Response Surface Methodology and Introducing This Nanofluid to the Industry. Mater. Sci. Eng. B 2023, 297, 116693. [Google Scholar] [CrossRef]
- David, H.A.; Edwards, A.W.F. Annotated Readings in the History of Statistics; Springer: Berlin/Heidelberg, Germany, 2001; Volume 1. [Google Scholar]
- Bettonvil, B.; del Castillo, E.; Kleijnen, J.P.C. Statistical Testing of Optimality Conditions in Multiresponse Simulation-Based Optimization. Eur. J. Oper. Res. 2009, 199, 448–458. [Google Scholar] [CrossRef]
- Cintas, P.G.; Almagro, L.M.; Llabres, X.T.-M. Industrial Statistics with Minitab; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1118383788. [Google Scholar]
- Devore, J.L. Probability and Statistics for Engineering and the Sciences; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2012; ISBN 9780840068279. [Google Scholar]
- The SciPy Community Optimization and Root Finding (Scipy.Optimize)—SciPy v1.4.1 Reference Guide. Available online: https://docs.scipy.org/doc/scipy/reference/optimize.html (accessed on 12 May 2020).
Variable | Unit | Notation | Levels |
---|---|---|---|
Time | Hours | x1 | {24, 48, 72, 96, 120} |
AAC | % | x2 | {40, 50, 60} |
NaCl | g | x3 | {0, 30, 60, 90} |
FeSO4 | g | x4 | {0, 14, 28, 42} |
Exp. | Sulf. | Exp. | Sulf. | Exp. | Sulf. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 24 | 60 | 91 | 28 | 24 | 81 | 48 | 60 | 0 | 0 | 17 | 161 | 96 | 50 | 91 | 28 | 21 |
2 | 24 | 60 | 91 | 42 | 23 | 82 | 48 | 40 | 61 | 28 | 17 | 162 | 96 | 40 | 91 | 42 | 21 |
3 | 24 | 50 | 91 | 42 | 19 | 83 | 48 | 50 | 0 | 0 | 16 | 163 | 96 | 50 | 91 | 42 | 21 |
4 | 24 | 60 | 91 | 0 | 18 | 84 | 48 | 40 | 30 | 0 | 16 | 164 | 96 | 60 | 30 | 14 | 19 |
5 | 24 | 60 | 61 | 14 | 18 | 85 | 48 | 60 | 0 | 14 | 16 | 165 | 96 | 60 | 30 | 28 | 19 |
6 | 24 | 60 | 30 | 28 | 16 | 86 | 48 | 40 | 0 | 42 | 16 | 166 | 96 | 50 | 60 | 28 | 19 |
7 | 24 | 60 | 60 | 42 | 16 | 87 | 48 | 40 | 30 | 14 | 16 | 167 | 96 | 60 | 60 | 28 | 19 |
8 | 24 | 60 | 61 | 0 | 15 | 88 | 48 | 40 | 61 | 14 | 16 | 168 | 96 | 40 | 90 | 14 | 19 |
9 | 24 | 60 | 30 | 14 | 15 | 89 | 48 | 60 | 0 | 28 | 15 | 169 | 96 | 40 | 61 | 0 | 18 |
10 | 24 | 50 | 61 | 14 | 15 | 90 | 48 | 40 | 0 | 0 | 14 | 170 | 96 | 40 | 91 | 0 | 18 |
11 | 24 | 60 | 61 | 28 | 15 | 91 | 48 | 40 | 60 | 42 | 14 | 171 | 96 | 50 | 91 | 0 | 18 |
12 | 24 | 60 | 30 | 0 | 14 | 92 | 48 | 50 | 0 | 28 | 12 | 172 | 96 | 50 | 0 | 14 | 18 |
13 | 24 | 60 | 0 | 14 | 14 | 93 | 48 | 40 | 61 | 0 | 11 | 173 | 96 | 40 | 30 | 28 | 18 |
14 | 24 | 60 | 0 | 0 | 13 | 94 | 48 | 50 | 0 | 14 | 10 | 174 | 96 | 60 | 60 | 14 | 18 |
15 | 24 | 60 | 0 | 42 | 13 | 95 | 48 | 40 | 0 | 14 | 9 | 175 | 96 | 40 | 61 | 42 | 17 |
16 | 24 | 40 | 60 | 14 | 13 | 96 | 48 | 40 | 0 | 28 | 7 | 176 | 96 | 50 | 30 | 28 | 16 |
17 | 24 | 50 | 60 | 28 | 13 | 97 | 72 | 60 | 91 | 28 | 30 | 177 | 96 | 50 | 30 | 42 | 16 |
18 | 24 | 50 | 61 | 42 | 13 | 98 | 72 | 60 | 30 | 0 | 29 | 178 | 96 | 40 | 61 | 14 | 16 |
19 | 24 | 50 | 61 | 0 | 12 | 99 | 72 | 60 | 30 | 14 | 29 | 179 | 96 | 40 | 61 | 28 | 16 |
20 | 24 | 50 | 91 | 0 | 12 | 100 | 72 | 50 | 91 | 28 | 29 | 180 | 96 | 50 | 0 | 0 | 15 |
21 | 24 | 50 | 0 | 0 | 11 | 101 | 72 | 60 | 61 | 42 | 27 | 181 | 96 | 50 | 0 | 28 | 15 |
22 | 24 | 40 | 91 | 0 | 11 | 102 | 72 | 60 | 0 | 42 | 26 | 182 | 96 | 60 | 0 | 28 | 15 |
23 | 24 | 50 | 0 | 14 | 11 | 103 | 72 | 60 | 61 | 28 | 26 | 183 | 96 | 60 | 0 | 42 | 15 |
24 | 24 | 60 | 0 | 28 | 11 | 104 | 72 | 60 | 0 | 0 | 25 | 184 | 96 | 40 | 30 | 14 | 15 |
25 | 24 | 50 | 0 | 42 | 11 | 105 | 72 | 60 | 30 | 28 | 25 | 185 | 96 | 50 | 30 | 14 | 15 |
26 | 24 | 50 | 30 | 42 | 11 | 106 | 72 | 60 | 30 | 42 | 25 | 186 | 96 | 50 | 61 | 14 | 15 |
27 | 24 | 60 | 30 | 42 | 11 | 107 | 72 | 60 | 0 | 14 | 24 | 187 | 96 | 40 | 0 | 28 | 13 |
28 | 24 | 50 | 91 | 14 | 11 | 108 | 72 | 60 | 61 | 14 | 24 | 188 | 96 | 40 | 30 | 42 | 13 |
29 | 24 | 60 | 91 | 14 | 11 | 109 | 72 | 40 | 90 | 28 | 24 | 189 | 96 | 50 | 0 | 42 | 12 |
30 | 24 | 50 | 30 | 0 | 10 | 110 | 72 | 60 | 91 | 42 | 23 | 190 | 96 | 40 | 0 | 0 | 11 |
31 | 24 | 50 | 0 | 28 | 10 | 111 | 72 | 50 | 30 | 14 | 22 | 191 | 96 | 40 | 0 | 14 | 11 |
32 | 24 | 50 | 30 | 14 | 10 | 112 | 72 | 40 | 30 | 28 | 22 | 192 | 96 | 40 | 0 | 42 | 11 |
33 | 24 | 40 | 30 | 42 | 10 | 113 | 72 | 50 | 30 | 28 | 22 | 193 | 120 | 60 | 91 | 42 | 31 |
34 | 24 | 50 | 91 | 28 | 10 | 114 | 72 | 50 | 30 | 42 | 22 | 194 | 120 | 60 | 0 | 42 | 28 |
35 | 24 | 40 | 0 | 0 | 9 | 115 | 72 | 50 | 60 | 42 | 22 | 195 | 120 | 50 | 91 | 42 | 27 |
36 | 24 | 40 | 30 | 0 | 9 | 116 | 72 | 50 | 91 | 42 | 22 | 196 | 120 | 60 | 61 | 28 | 26 |
37 | 24 | 40 | 30 | 14 | 9 | 117 | 72 | 60 | 61 | 0 | 21 | 197 | 120 | 60 | 91 | 0 | 25 |
38 | 24 | 40 | 61 | 28 | 9 | 118 | 72 | 40 | 30 | 14 | 21 | 198 | 120 | 50 | 61 | 28 | 25 |
39 | 24 | 40 | 61 | 42 | 9 | 119 | 72 | 60 | 91 | 14 | 21 | 199 | 120 | 60 | 30 | 0 | 23 |
40 | 24 | 40 | 91 | 42 | 9 | 120 | 72 | 40 | 91 | 42 | 21 | 200 | 120 | 50 | 91 | 0 | 22 |
41 | 24 | 40 | 60 | 0 | 8 | 121 | 72 | 40 | 30 | 0 | 20 | 201 | 120 | 60 | 0 | 14 | 22 |
42 | 24 | 40 | 0 | 14 | 8 | 122 | 72 | 50 | 30 | 0 | 20 | 202 | 120 | 60 | 0 | 28 | 22 |
43 | 24 | 40 | 0 | 42 | 7 | 123 | 72 | 50 | 60 | 28 | 20 | 203 | 120 | 60 | 30 | 14 | 22 |
44 | 24 | 40 | 0 | 28 | 6 | 124 | 72 | 50 | 91 | 0 | 19 | 204 | 120 | 60 | 30 | 28 | 22 |
45 | 24 | 50 | 30 | 28 | 6 | 125 | 72 | 60 | 91 | 0 | 19 | 205 | 120 | 60 | 30 | 42 | 22 |
46 | 24 | 40 | 91 | 14 | 6 | 126 | 72 | 50 | 0 | 14 | 19 | 206 | 120 | 50 | 31 | 0 | 21 |
47 | 24 | 40 | 91 | 28 | 5 | 127 | 72 | 40 | 61 | 42 | 19 | 207 | 120 | 50 | 0 | 42 | 21 |
48 | 24 | 40 | 30 | 28 | 4 | 128 | 72 | 50 | 61 | 14 | 18 | 208 | 120 | 50 | 61 | 42 | 21 |
49 | 48 | 60 | 61 | 28 | 29 | 129 | 72 | 50 | 91 | 14 | 18 | 209 | 120 | 60 | 61 | 42 | 21 |
50 | 48 | 60 | 91 | 0 | 28 | 130 | 72 | 40 | 91 | 0 | 17 | 210 | 120 | 60 | 0 | 0 | 20 |
51 | 48 | 60 | 60 | 0 | 26 | 131 | 72 | 50 | 0 | 28 | 17 | 211 | 120 | 50 | 61 | 0 | 20 |
52 | 48 | 50 | 91 | 0 | 24 | 132 | 72 | 60 | 0 | 28 | 17 | 212 | 120 | 60 | 60 | 0 | 20 |
53 | 48 | 60 | 91 | 28 | 24 | 133 | 72 | 50 | 61 | 0 | 16 | 213 | 120 | 50 | 0 | 28 | 20 |
54 | 48 | 50 | 61 | 0 | 23 | 134 | 72 | 50 | 0 | 42 | 16 | 214 | 120 | 50 | 30 | 28 | 20 |
55 | 48 | 60 | 30 | 14 | 23 | 135 | 72 | 40 | 60 | 14 | 16 | 215 | 120 | 40 | 61 | 28 | 20 |
56 | 48 | 60 | 30 | 42 | 23 | 136 | 72 | 40 | 61 | 28 | 15 | 216 | 120 | 50 | 91 | 28 | 20 |
57 | 48 | 50 | 61 | 42 | 23 | 137 | 72 | 50 | 0 | 0 | 14 | 217 | 120 | 60 | 91 | 28 | 20 |
58 | 48 | 60 | 60 | 42 | 23 | 138 | 72 | 40 | 0 | 14 | 14 | 218 | 120 | 40 | 92 | 0 | 18 |
59 | 48 | 60 | 91 | 42 | 23 | 139 | 72 | 40 | 91 | 14 | 14 | 219 | 120 | 40 | 31 | 28 | 18 |
60 | 48 | 50 | 30 | 28 | 22 | 140 | 72 | 40 | 60 | 0 | 13 | 220 | 120 | 50 | 30 | 42 | 18 |
61 | 48 | 60 | 30 | 28 | 22 | 141 | 72 | 40 | 0 | 28 | 12 | 221 | 120 | 60 | 60 | 14 | 18 |
62 | 48 | 50 | 30 | 42 | 22 | 142 | 72 | 40 | 30 | 42 | 12 | 222 | 120 | 60 | 91 | 14 | 18 |
63 | 48 | 50 | 61 | 28 | 22 | 143 | 72 | 40 | 0 | 42 | 11 | 223 | 120 | 40 | 92 | 28 | 18 |
64 | 48 | 50 | 91 | 28 | 22 | 144 | 72 | 40 | 0 | 0 | 10 | 224 | 120 | 40 | 61 | 0 | 17 |
65 | 48 | 50 | 91 | 42 | 22 | 145 | 96 | 60 | 30 | 0 | 28 | 225 | 120 | 50 | 0 | 14 | 17 |
66 | 48 | 50 | 30 | 0 | 21 | 146 | 96 | 60 | 91 | 28 | 27 | 226 | 120 | 50 | 30 | 14 | 17 |
67 | 48 | 60 | 30 | 0 | 21 | 147 | 96 | 60 | 91 | 42 | 27 | 227 | 120 | 40 | 31 | 42 | 16 |
68 | 48 | 40 | 30 | 42 | 21 | 148 | 96 | 60 | 91 | 0 | 26 | 228 | 120 | 40 | 61 | 14 | 16 |
69 | 48 | 40 | 91 | 0 | 20 | 149 | 96 | 60 | 90 | 14 | 25 | 229 | 120 | 50 | 61 | 14 | 16 |
70 | 48 | 60 | 0 | 42 | 20 | 150 | 96 | 60 | 30 | 42 | 24 | 230 | 120 | 40 | 91 | 14 | 16 |
71 | 48 | 50 | 61 | 14 | 20 | 151 | 96 | 50 | 30 | 0 | 23 | 231 | 120 | 50 | 91 | 14 | 16 |
72 | 48 | 60 | 61 | 14 | 20 | 152 | 96 | 60 | 61 | 42 | 23 | 232 | 120 | 40 | 91 | 42 | 16 |
73 | 48 | 40 | 91 | 42 | 20 | 153 | 96 | 40 | 30 | 0 | 22 | 233 | 120 | 40 | 0 | 28 | 14 |
74 | 48 | 50 | 0 | 42 | 19 | 154 | 96 | 50 | 61 | 42 | 22 | 234 | 120 | 40 | 61 | 42 | 14 |
75 | 48 | 50 | 30 | 14 | 19 | 155 | 96 | 60 | 0 | 0 | 21 | 235 | 120 | 50 | 0 | 0 | 13 |
76 | 48 | 40 | 91 | 14 | 19 | 156 | 96 | 50 | 60 | 0 | 21 | 236 | 120 | 40 | 0 | 0 | 12 |
77 | 48 | 50 | 91 | 14 | 19 | 157 | 96 | 60 | 61 | 0 | 21 | 237 | 120 | 40 | 30 | 0 | 12 |
78 | 48 | 60 | 91 | 14 | 19 | 158 | 96 | 60 | 0 | 14 | 21 | 238 | 120 | 40 | 0 | 14 | 12 |
79 | 48 | 40 | 91 | 28 | 19 | 159 | 96 | 50 | 91 | 14 | 21 | 239 | 120 | 40 | 30 | 14 | 12 |
80 | 48 | 40 | 30 | 28 | 18 | 160 | 96 | 40 | 90 | 28 | 21 | 240 | 120 | 40 | 0 | 42 | 10 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 15 | 5141.85 | 342.790 | 39.81 | 0.000 |
1 | 704.79 | 704.793 | 81.86 | 0.000 | |
1 | 164.15 | 164.146 | 19.06 | 0.000 | |
1 | 486.97 | 486.969 | 56.56 | 0.000 | |
1 | 381.25 | 381.254 | 44.28 | 0.000 | |
1 | 118.54 | 118.544 | 13.77 | 0.000 | |
1 | 57.56 | 57.558 | 6.68 | 0.010 | |
1 | 323.47 | 323.468 | 37.57 | 0.000 | |
1 | 61.73 | 61.733 | 7.17 | 0.008 | |
1 | 66.55 | 66.555 | 7.73 | 0.006 | |
1 | 36.69 | 36.695 | 4.26 | 0.040 | |
1 | 62.23 | 62.229 | 7.23 | 0.008 | |
1 | 92.79 | 92.787 | 10.78 | 0.001 | |
1 | 33.63 | 33.633 | 3.91 | 0.049 | |
1 | 84.31 | 84.310 | 9.79 | 0.002 | |
1 | 65.12 | 65.118 | 7.56 | 0.006 | |
Error | 224 | 1928.65 | 8.610 | ||
Total | 239 | 7070.50 |
R2 | R2 (adjust.) | R2 (predict.) |
---|---|---|
72.72% | 70.90% | 68.51% |
Variable | Optimal Value |
---|---|
60.14 | |
60 | |
90 | |
42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, J.; Saldana, M.; Toro, N.; Mura, M.; Castillo, I.; Guzmán, A.; Gálvez, E.; Sepúlveda, R. Statistical Modeling of NaCl and FeSO4 Pretreatment Effect on Refractory Copper Ore Leaching. Appl. Sci. 2025, 15, 1375. https://doi.org/10.3390/app15031375
Castillo J, Saldana M, Toro N, Mura M, Castillo I, Guzmán A, Gálvez E, Sepúlveda R. Statistical Modeling of NaCl and FeSO4 Pretreatment Effect on Refractory Copper Ore Leaching. Applied Sciences. 2025; 15(3):1375. https://doi.org/10.3390/app15031375
Chicago/Turabian StyleCastillo, Jonathan, Manuel Saldana, Norman Toro, Mauricio Mura, Ignacio Castillo, Alexis Guzmán, Edelmira Gálvez, and Rossana Sepúlveda. 2025. "Statistical Modeling of NaCl and FeSO4 Pretreatment Effect on Refractory Copper Ore Leaching" Applied Sciences 15, no. 3: 1375. https://doi.org/10.3390/app15031375
APA StyleCastillo, J., Saldana, M., Toro, N., Mura, M., Castillo, I., Guzmán, A., Gálvez, E., & Sepúlveda, R. (2025). Statistical Modeling of NaCl and FeSO4 Pretreatment Effect on Refractory Copper Ore Leaching. Applied Sciences, 15(3), 1375. https://doi.org/10.3390/app15031375