The Effect of Pre-Treatment on the Rehydration of Dried Apple Cube
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Drying Procedure
- (a)
- Blanching in steam for 60 s,
- (b)
- Microwave heating for 30 s at 600 W,
- (c)
- Osmotic dehydration in a 10% sugar solution (C12H22O11)n (molecular weight 342.3)n, g mol−1 at 20.0 °C for 24 h. The osmotic pressure of the solution was π = 0.715 × 103 hPa.
2.3. Rehydration Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maldonado, S.; Arnau, E.; Bertuzzi, M.A. Effect of Temperature and Pretreatment on Water Diffusion during Rehydration of Dehydrated Mangoes. J. Food Eng. 2010, 96, 333–341. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, H.; Xu, J.; Zhuang, W.; Zheng, B.; Lo, Y.M.; Huang, Z.; Tian, Y. Microwave Vacuum Drying of Lotus (Nelumbo nucifera Gaertn.) Seeds: Effects of Ultrasonic Pretreatment on Color, Antioxidant Activity, and Rehydration Capacity. LWT 2021, 149, 111603. [Google Scholar] [CrossRef]
- Zhou, C.; Feng, Y.; Zhang, L.; Yagoub, A.E.G.A.; Wahia, H.; Ma, H.; Sun, Y.; Yu, X. Rehydration Characteristics of Vacuum Freeze- and Hot Air-Dried Garlic Slices. LWT 2021, 143, 111158. [Google Scholar] [CrossRef]
- Moreira, R.; Chenlo, F.; Chaguri, L.; Fernandes, C. Water Absorption, Texture, and Color Kinetics of Air-Dried Chestnuts during Rehydration. J. Food Eng. 2008, 86, 584–594. [Google Scholar] [CrossRef]
- Giraldo, G.; Vázquez, R.; Martín-Esparza, M.E.; Chiralt, A. Rehydration Kinetics and Soluble Solids Lixiviation of Candied Mango Fruit as Affected by Sucrose Concentration. J. Food Eng. 2006, 77, 825–834. [Google Scholar] [CrossRef]
- Hebda, T.; Brzychczyk, B.; Lapczynska-Kordon, B.; Styks, J. Influence of Pre-Treatment and Drying Methods on Process of Rehydration of Dried Apple. In Engineering for Rural Development; Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2019; Volume 18, pp. 669–676. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zhong, Y.; Zhao, Y.; Yang, H. Drying-Induced Protein and Microstructure Damages of Squid Fillets Affected Moisture Distribution and Rehydration Ability during Rehydration. J. Food Eng. 2014, 123, 23–31. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.; Lv, W.; Zhao, D. Effect of Ultrasound Pretreatment on the Drying Kinetics and Characteristics of Pregelatinized Kidney Beans Based on Microwave-Assisted Drying. Food Chem. 2022, 397, 133806. [Google Scholar] [CrossRef]
- Witrowa-Rajchert, D.; Lewicki, P.P. Rehydration Properties of Dried Plant Tissues. Int. J. Food Sci. Technol. 2006, 41, 1040–1046. [Google Scholar] [CrossRef]
- Górnicki, K.; Choińska, A.; Kaleta, A. Effect of Variety on Rehydration Characteristics of Dried Apples. Processes 2020, 8, 1454. [Google Scholar] [CrossRef]
- Winiczenko, R.; Górnicki, K.; Kaleta, A.; Janaszek-Mańkowska, M.; Choińska, A.; Trajer, J. Apple Cubes Drying and Rehydration. Multiobjective Optimization of the Processes. Sustainability 2018, 10, 4126. [Google Scholar] [CrossRef]
- Bilbao-Sáinz, C.; Andrés, A.; Fito, P. Hydration Kinetics of Dried Apple as Affected by Drying Conditions. J. Food Eng. 2005, 68, 369–376. [Google Scholar] [CrossRef]
- Doymaz, İ.; Sahin, M. Effect of Temperature and Pre-Treatment on Drying and Rehydration Characteristics of Broccoli Slices. J. Food Meas. Charact. 2016, 10, 364–373. [Google Scholar] [CrossRef]
- Markowski, M.; Zielińska, M. Kinetics of Water Absorption and Soluble-Solid Loss of Hot-Air-Dried Carrots during Rehydration. Int. J. Food Sci. Technol. 2011, 46, 1122–1128. [Google Scholar] [CrossRef]
- Ricce, C.; Rojas, M.L.; Miano, A.C.; Siche, R.; Augusto, P.E.D. Ultrasound Pre-Treatment Enhances the Carrot Drying and Rehydration. Food Res. Int. 2016, 89, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Kayacan, S.; Karasu, S.; Akman, P.K.; Goktas, H.; Doymaz, I.; Sagdic, O. Effect of Different Drying Methods on Total Bioactive Compounds, Phenolic Profile, in Vitro Bioaccessibility of Phenolic and HMF Formation of Persimmon. LWT 2020, 118, 108830. [Google Scholar] [CrossRef]
- Managa, M.G.; Sultanbawa, Y.; Sivakumar, D. Effects of Different Drying Methods on Untargeted Phenolic Metabolites, and Antioxidant Activity in Chinese Cabbage (Brassica rapa L. subsp. chinensis) and Nightshade (Solanum retroflexum Dun.). Molecules 2020, 25, 1326. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, G.; Chen, K.; Chen, X.; Hong, Q.; Kan, J. Assessment of Fresh Star Anise (Illicium verum Hook.f.) Drying Methods for Influencing Drying Characteristics, Color, Flavor, Volatile Oil and Shikimic Acid. Food Chem. 2021, 342, 128359. [Google Scholar] [CrossRef] [PubMed]
- Krokida, M.K.; Philippopoulos, C. Rehydration of Dehydrated Foods. Dry. Technol. 2005, 23, 799–830. [Google Scholar] [CrossRef]
- Paes, S.S.; Stringari, G.B.; Laurindo, J.B. Effect of Vacuum and Relaxation Periods and Solution Concentration on the Osmotic Dehydration of Apples. Int. J. Food Sci. Technol. 2007, 42, 441–447. [Google Scholar] [CrossRef]
- Rojas, M.L.; Augusto, P.E.D. Microstructure Elements Affect the Mass Transfer in Foods: The Case of Convective Drying and Rehydration of Pumpkin. LWT 2018, 93, 102–108. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Farrell, T.; Nagy, S.A.; Karim, M.A. Fundamental Understanding of Cellular Water Transport Process in Bio-Food Material during Drying. Sci. Rep. 2018, 8, 15191. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Xing, B.; Yi, H.; Li, Y.; Zheng, B.; Wang, Y.; Shao, Q. Effects of Different Drying Methods on Appearance, Microstructure, Bioactive Compounds and Aroma Compounds of Saffron (Crocus sativus L.). LWT 2020, 120, 108913. [Google Scholar] [CrossRef]
- Monteiro, R.L.; Link, J.V.; Tribuzi, G.; Carciofi, B.A.M.; Laurindo, J.B. Microwave Vacuum Drying and Multi-Flash Drying of Pumpkin Slices. J. Food Eng. 2018, 232, 1–10. [Google Scholar] [CrossRef]
- Ergün, K.; Çalışkan, G.; Dirim, S.N. Determination of the Drying and Rehydration Kinetics of Freeze Dried Kiwi (Actinidia deliciosa) Slices. Heat. Mass. Transf. 2016, 52, 2697–2705. [Google Scholar] [CrossRef]
- Benseddik, A.; Azzi, A.; Zidoune, M.N.; Khanniche, R.; Besombes, C. Empirical and Diffusion Models of Rehydration Process of Differently Dried Pumpkin Slices. J. Saudi Soc. Agric. Sci. 2019, 18, 401–410. [Google Scholar] [CrossRef]
- Krokida, M.K.; Marinos-Kouris, D. Rehydration Kinetics of Dehydrated Products. J. Food Eng. 2003, 57, 1–7. [Google Scholar] [CrossRef]
- Boateng, I.D.; Yang, X.M.; Tahany, A.A.A.; Li, Y.Y. Drying Methods Affect Organoleptic and Physicochemical Properties of Rehydrated Ginkgo Seed Slices. Ind. Crops Prod. 2021, 160, 113166. [Google Scholar] [CrossRef]
- Kaleta, A.; Górnicki, K.; Siwiska, U. Influence of methods of parsley root pretreatment before convection drying on kinetics of dried product rehydration. Acta Sci. Polonorum. Tech. Agrar. 2005, 4, 19–28. [Google Scholar] [CrossRef]
- Wang, B.; Jia, Y.; Li, Y.; Wang, Z.; Wen, L.; He, Y.; Xu, X. Dehydration–Rehydration Vegetables: Evaluation and Future Challenges. Food Chem. 2023, 20, 100935. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.H.; Nagy, S.A.; Karim, M.A. Transport of Cellular Water during Drying: An Understanding of Cell Rupturing Mechanism in Apple Tissue. Food Res. Int. 2018, 105, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Severini, C.; Baiano, A.; De Pilli, T.; Carbone, B.F.; Derossi, A. Combined Treatments of Blanching and Dehydration: Study on Potato Cubes. J. Food Eng. 2005, 68, 289–296. [Google Scholar] [CrossRef]
- Gökçe Kocabay, Ö.; İsmail, O. Investigation of Rehydration Kinetics of Open-Sun Dried Okra Samples. Heat. Mass. Transf. 2017, 53, 2155–2163. [Google Scholar] [CrossRef]
- Rafiq, A.; Chowdhary, J.; Hazarika, M.K.; Makroo, H.A. Temperature Dependence on Hydration Kinetic Model Parameters during Rehydration of Parboiled Rice. J. Food Sci. Technol. 2015, 52, 6090–6094. [Google Scholar] [CrossRef]
- Giri, S.K.; Prasad, S. Drying Kinetics and Rehydration Characteristics of Microwave-Vacuum and Convective Hot-Air Dried Mushrooms. J. Food Eng. 2007, 78, 512–521. [Google Scholar] [CrossRef]
- Yi, J.; Zhou, L.; Bi, J.; Liu, X.; Qinqin, C.; Wu, X. Influences of Microwave Pre-Drying and Explosion Puffing Drying Induced Cell Wall Polysaccharide Modification on Physicochemical Properties, Texture, Microstructure and Rehydration of Pitaya Fruit Chips. LWT 2016, 70, 271–279. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Lemus-Mondaca, R.; Bilbao-Sáinz, C.; Fito, P.; Andrés, A. Effect of Air Drying Temperature on the Quality of Rehydrated Dried Red Bell Pepper (var. Lamuyo). J. Food Eng. 2008, 85, 42–50. [Google Scholar] [CrossRef]
- Rhim, J.W.; Koh, S.; Kim, J.M. Effect of Freezing Temperature on Rehydration and Water Vapor Adsorption Characteristics of Freeze-Dried Rice Porridge. J. Food Eng. 2011, 104, 484–491. [Google Scholar] [CrossRef]
- Rastogi, N.K.; Nayak, C.A.; Raghavarao, K.S.M.S. Influence of Osmotic Pre-Treatments on Rehydration Characteristics of Carrots. J. Food Eng. 2004, 65, 287–292. [Google Scholar] [CrossRef]
- Markowski, M.; Stankiewicz, I.; Zapotoczny, P.; Borowska, J. Effect of Variety on Drying Characteristics and Selected Quality Attributes of Dried Carrots. Dry. Technol. 2006, 24, 1011–1018. [Google Scholar] [CrossRef]
- Kaptso, K.G.; Njintang, Y.N.; Komnek, A.E.; Hounhouigan, J.; Scher, J.; Mbofung, C.M.F. Physical Properties and Rehydration Kinetics of Two Varieties of Cowpea (Vigna unguiculata) and Bambara Groundnuts (Voandzeia subterranea) Seeds. J. Food Eng. 2008, 86, 91–99. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Piotrowski, D.; Janowicz, M.; Sitkiewicz, I.; Lenart, A. The influence of temperature and pressure in vacuum-dryer chamber on rehydration of dried strawberries. Acta Agrophysica 2011, 17, 289–300. (In Polish) [Google Scholar]
- Kowalska, H.; Marzec, A.; Kowalska, J.; Ciurzyńska, A.; Samborska, K.; Bialik, M.; Lenart, A. Rehydration Properties of Hybrid Method Dried Fruit Enriched by Natural Components. Int. Agrophys. 2018, 32, 175–182. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Witrowa-Rajchert, D.; Pomarańska-Łazuka, W.; Nowak, D. Rehydration properties of dried onion. Int. J. Food Prop. 1998, 1, 275. [Google Scholar] [CrossRef]
- Maskan, M. Drying, shrinkage and rehydration characteristics of kiwifruit during hot air and microwave drying. J. Food Eng. 2001, 48, 177–182. [Google Scholar] [CrossRef]
- Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries. Food Chem. 2017, 230, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Aghilinategh, N.; Rafiee, S.; Gholikhani, A.; Hosseinpur, S.; Omid, M.; Mohtasebi, S.S.; Maleki, N. A comparative study of dried apple using hot air, intermittent and continuous microwave: Evaluation of kinetic parameters and physicochemical quality attributes. Food Sci Nutr. 2015, 3, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Beigi, M. Hot air drying of apple slices: Dehydration characteristics and quality assessment. Heat Mass Transf. 2016, 52, 1435–1442. [Google Scholar] [CrossRef]
- Demiray, E.; Tulek, Y. Drying characteristics of garlic (Allium sativum L.) slices in a convective hot air dryer. Heat Mass TransferI. 2014, 50, 779–786. [Google Scholar] [CrossRef]
- Tulek, Y. Drying kinetics of oyster mushroom (Pleurotus ostreatus) in a convective hot air dryer. J. Agric. Sci. Technol. 2011, 13, 655–664. [Google Scholar]
- Zheng, D.J.; Cheng, Y.Q.; Liu, H.J.; Li, L.T. Investigation of EHD-Enhanced Water Evaporation and a Novel Empirical Model. Int. J. Food Eng. 2011, 7. [Google Scholar] [CrossRef]
- Majchrzak, E.; Mochnacki, B. Numerical Methods, Theoretical Foundations, Practical Aspects and Algorithms. Wydaw. Politech. Śląskiej Gliw. 2004. ISBN 83-7335-231-7. (In Polish) [Google Scholar]
- Winiczenko, R.; Kaleta, A.; Górnicki, K.; Choińska, A. Impact of drying parameters and methods on the volume increase of dried apples during their rehydration. Agric. Eng. 2014, 18, 219–228. [Google Scholar] [CrossRef]
- Krokida, M.; Maroulis, Z. Structural properties of dehydrated products during rehydration. International. J. Food Sci. Technol. 2001, 36, 529–538. [Google Scholar] [CrossRef]
- Askari, G.R.; Emam-Djomeh, Z.; Mousavi, S.M. Effects of combined coating and microwave assisted hot-air drying on the texture, microstructure and rehydration characteristics of apple slices. Food Sci. Technol. Int. 2006, 12, 39–46. [Google Scholar] [CrossRef]
- Maskan, M. icrowave/air and microwave finish drying of banana. J. Food Eng. 2000, 44, 71–78, ISSN 0260-8774. [Google Scholar] [CrossRef]
- Tepe, T.K.; Tepe, B. The comparison of drying and rehydration characteristics of intermittent-microwave and hot-air dried-apple slices. Heat Mass Transf. 2020, 56, 3047–3057. [Google Scholar] [CrossRef]
- Sumnu, G.; Turabi, E.; Oztop, M. Drying of carrots in microwave and halogen lamp–microwave combination ovens. LWT-Food Sci. Technol. 2005, 38, 549–553. [Google Scholar] [CrossRef]
- İzli, N.; Polat, A. Intermittent Microwave Drying of Apple Slices: Drying Kinetics, Modeling, Rehydration Ratio and Effective Moisture Diffusivity. Tarım Bilim. Derg. -J. Agric. Sci. 2020, 26, 32–41. [Google Scholar] [CrossRef]
- Ahmed, J.; Shivhare, U.S.; Singh, G. Drying characteristics and product quality of coriander leaves. Food Bioprod. Process. 2001, 79, 103–106. [Google Scholar] [CrossRef]
- Sarimeseli, A. Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Convers. Manag. 2011, 52, 1449–1453. [Google Scholar] [CrossRef]
- Taiwo, K.A.; Angersbach, A.; Knorr, D. Rehydration Studies on Pretreated and Osmotically Dehydrated Apple Slices. J. Food Sci. 2002, 67, 842–847. [Google Scholar] [CrossRef]
- Figiel, A. Dehydration of apples by a combination of convective and vacuum-microwave drying. Pol. J. Food Nutr. Sci. 2007, 57, 131–135, ISSN:1230-0322. [Google Scholar]
- Jiang, H.; Zhang, M.; Mujumdar, A.S.; Lim, R.X. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying. J. Sci. Food Agric. 2014, 94, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Markowski, M.; Bondaruk, J.; Błaszczak, W. Rehydration behavior of vacuum-microwave-dried potato cubes. Drying Technol. 2009, 27, 296–305. [Google Scholar] [CrossRef]
- Witrowa-Rajchert, D. Rehydration as an Indicator of Changes Occurring in Plant Tissue During Drying; FundacjaRozwój SGGW: Warszawa, Poland, 1999; ISBN 83-87660-95-7. (In Polish) [Google Scholar]
- Torki-Harchegani, M.; Ghanbarian, D.; Sadeghi, M. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods. Heat Mass Transf. 2015, 51, 1121–1129. [Google Scholar] [CrossRef]
- Witrowa-Rajchert, D.; Dworski, T. Research on dried apple rehydrated with water and milk. Acta Agroph 2003, 2, 433–441, ISSN:1234-4125. [Google Scholar]
- Riveros-Gomez, M.; Baldán, Y.; Román, M.C.; Fabani, M.P.; Mazza, G.; Rodríguez, R. Drying and rehydration kinetics of peeled and unpeeled green apple slices (Granny Smith cv). J. Environ. Sci. Health 2022, 57, 835–847. [Google Scholar] [CrossRef] [PubMed]
Dried Samples With Air Circulation | Dried Samples Without Air Circulation |
---|---|
“KBOWZ”—mass of rehydrate—without pre-treatment | “KBOWZ–”—rehydrate mass—without pre-treatment |
“KBWZ”—mass of rehydrate—blanching | “KBWZ–”—mass of rehydrate—blanching |
“KMWZ”—mass of rehydrate—microwave drying | “KMWZ–”—mass of rehydrate—microwave drying |
“KRWZ”—mass of rehydrate—osmotic drying | “KRWZ–”—mass of rehydrate—osmotic drying |
KBOWZ | −3.02 × 10−2 | −1.87 × 10−1 | −6.46 × 10−3 | −1.09 × 10−5 | 3.51 | 4.01 × 10−1 | 4.46 × 10−3 | 3.85 × 10−6 |
KBWZ | −2.78 × 10−3 | −6.40 × 10−2 | −1.83 × 10−2 | −9.05 × 10−5 | 2.52 | 6.62 × 10−1 | 1.70 × 10−2 | 3.91 × 10−5 |
KMWZ | −1.06 × 10−2 | −6.08 × 10−2 | −1.84 × 10−2 | −8.70 × 10−5 | 2.38 | 6.66 × 10−1 | 1.69 × 10−2 | 3.73 × 10−5 |
KRWZ | −6.08 × 10−2 | −1.31 × 10−1 | −1.27 × 10−2 | −5.54 × 10−5 | 2.96 | 5.49 × 10−1 | 1.12 × 10−2 | 2.38 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomasz, H.; Beata, B.; Jan, G.; Klaudia, C. The Effect of Pre-Treatment on the Rehydration of Dried Apple Cube. Appl. Sci. 2025, 15, 1377. https://doi.org/10.3390/app15031377
Tomasz H, Beata B, Jan G, Klaudia C. The Effect of Pre-Treatment on the Rehydration of Dried Apple Cube. Applied Sciences. 2025; 15(3):1377. https://doi.org/10.3390/app15031377
Chicago/Turabian StyleTomasz, Hebda, Brzychczyk Beata, Giełżecki Jan, and Cieśla Klaudia. 2025. "The Effect of Pre-Treatment on the Rehydration of Dried Apple Cube" Applied Sciences 15, no. 3: 1377. https://doi.org/10.3390/app15031377
APA StyleTomasz, H., Beata, B., Jan, G., & Klaudia, C. (2025). The Effect of Pre-Treatment on the Rehydration of Dried Apple Cube. Applied Sciences, 15(3), 1377. https://doi.org/10.3390/app15031377