Image Navigation System for Thoracoscopic Surgeries Driven by Nuclear Medicine Utilizing Channel R-CNN
Abstract
:1. Introduction
- (1)
- A real-time image-guided thoracoscopic surgery navigation system for surgeon operation with target region segmentation and cutting path indication is proposed. To our best knowledge, this is the first trial in the cutting operation indication of thoracoscopic surgery;
- (2)
- The channel R-CNN network is innovatively designed, the Detection Network Head (DNH) and Thorax Network Head (TNH) operate in parallel to process the surgery navigation task;
- (3)
- The improved leapfrog algorithm is applied to refine the cutting curve generation based on rough segmentation results, and the combination with the region detection results ensures the accuracy of the cutting curve and reduces the surgery risk.
2. Materials and Methods
2.1. Dataset Preparation
2.1.1. Thoracoscopic Surgery Image Dataset
2.1.2. Cutting Curve Dataset
2.2. Methods
2.2.1. Problem Definition
2.2.2. Model Definition
Algorithm 1. Refined Cutting Curve Generation |
Input: ~ directed graph Output: ~ fine-tuned cutting path 1: Treat pixels of graph as individuals in frog population and record its size as , set the population number as , and set the first and maximum iteration number as 1 and ; 2: Define the frogs as the vector , where . When , the node is removed; otherwise, the node is selected; 3: Calculate the forwarding-satisfaction rate of each path using Equation (3); then, adjust the frog order; 4: Divide frogs into populations, and set the sub-population as . Iterate over the potential paths , and set as the path with highest forwarding-satisfaction rate and as the path with the lowest rate. Update the value of in sub-population ; 5: Re-adjust the frogs of sub-population according to , and generate the optimal subpopulation. Obtain the globally optimal path by comparing with ; 6: Re-arrange the frog order in sub-population , and apply the positive factor , the negative factor , and the penalty factor for the calculation of . Iterate over the frog population on the segmentation mask ; 7: Update the refined cutting path in circulation, loop step 3, and compare with the local optimal cutting path ; 8: end if 9: Determine whether the outperforms the ; 10: Update the refined cutting line: ; 11: Return |
2.2.3. Evaluation Metrics
3. Results and Discussions
3.1. Evaluations on Thoracic Tissue Contour Segmentation
3.2. Evaluations of Cutting Curve Segmentation
3.3. Robustness Analysis
3.4. User Study
3.5. Evaluation of Time and Computation Complexity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA A Cancer J. Clin. 2019, 69, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Kunkler, I.H.; Williams, L.J.; Jack, W.J.; Cameron, D.A.; Dixon, J.M. Breast-conserving surgery with or without irradiation in early breast cancer. N. Engl. J. Med. 2023, 388, 585–594. [Google Scholar] [CrossRef]
- Aujayeb, A.; Jackson, K. A review of the outcomes of rigid medical thoracoscopy in a large UK district general hospital. Pleura Peritoneum 2020, 5, 20200131. [Google Scholar] [CrossRef] [PubMed]
- Giannakeas, V.; Lim, D.W.; Narod, S.A. Bilateral mastectomy and breast cancer mortality. JAMA Oncol. 2024, 10, 1228–1236. [Google Scholar] [CrossRef]
- Safran, T.; Vorstenbosch, J.; Viezel-Mathieu, A.; Davison, P.; Dionisopoulos, T.J.P.; Surgery, R. Topical tranexamic acid in breast reconstruction: A double-blind randomized controlled trial. Plast. Reconstr. Surg. 2023, 152, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Haidari, T.A.; Nayahangan, L.J.; Bjerrum, F.; Hansen, H.J.; Konge, L.; Massard, G.; Batirel, H.F.; Novoa, N.M.; Milton, R.S.; Petersen, R.H.; et al. Consensus on technical procedures for simulation-based training in thoracic surgery: An international needs assessment. Eur. J. Cardio-Thoracic Surg. 2023, 63, ezad058. [Google Scholar] [CrossRef] [PubMed]
- Mustajab, M.; Shuja, M.I. Evaluation of Factors in Women’s Decisions Regarding Breast Surgery. Evaluation 2023, 8, 11. [Google Scholar]
- Fan, S.; Sáenz-Ravello, G.; Diaz, L.; Wu, Y.; Davó, R.; Wang, F.; Magic, M.; Al-Nawas, B.; Kämmerer, P.W. The accuracy of zygomatic implant placement assisted by dynamic computer-aided surgery: A systematic review and meta-analysis. J. Clin. Med. 2023, 12, 5418. [Google Scholar] [CrossRef]
- Westbrook, K.; Rollor, C.; Aldahmash, S.A.; Fay, G.G.; Rivera, E.; Price, J.B.; Griffin, I.; Tordik, P.A.; Martinho, F.C. Comparison of a novel static computer-aided surgical and freehand techniques for osteotomy and root-end resection. J. Endod. 2023, 49, 528–535.e521. [Google Scholar] [CrossRef]
- Bhuskute, K.P.; Jadhav, V.; Sharma, M.; Reche, A. Three-dimensional Computer-aided Design System used in Orthodontics and Orthognathic Surgery for Diagnosis and Treatment Planning-A Narrative Review. J. Clin. Diagn. Res. 2023, 17, ZE7–ZE10. [Google Scholar] [CrossRef]
- Kuo, S.-W.; Tseng, Y.-F.; Dai, K.-Y.; Chang, Y.-C.; Chen, K.-C.; Lee, J.-M. Electromagnetic navigation bronchoscopy localization versus percutaneous CT-guided localization for lung resection via video-assisted thoracoscopic surgery: A propensity-matched study. J. Clin. Med. 2019, 8, 379. [Google Scholar] [CrossRef]
- Chen, J.; Pan, X.; Gu, C.; Zheng, X.; Yuan, H.; Yang, J.; Sun, J. The feasibility of navigation bronchoscopy-guided pulmonary microcoil localization of small pulmonary nodules prior to thoracoscopic surgery. Transl. Lung Cancer Res. 2020, 9, 2380. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Chan, H.; Ujiie, H.; Fujino, K.; Kinoshita, T.; Irish, J.C.; Yasufuku, K. Novel thoracoscopic navigation system with augmented real-time image guidance for chest wall tumors. Ann. Thorac. Surg. 2018, 106, 1468–1475. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Jia, D.; Zou, S.; Li, M.; Zhu, H. Adaptive multi-path routing based on an improved leapfrog algorithm. Inf. Sci. 2016, 367, 615–629. [Google Scholar]
- Ni, Z.-L.; Bian, G.-B.; Li, Z.; Zhou, X.-H.; Li, R.-Q.; Hou, Z.-G. Space squeeze reasoning and low-rank bilinear feature fusion for surgical image segmentation. IEEE J. Biomed. Healh Inform. 2022, 26, 3209–3217. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, B.; Egger, J.; Wang, C.; Smedby, Ö.; Jiang, X.; Chen, X. A review on AI-based medical image computing in head and neck surgery. Phys. Med. Biol. 2022, 67, 17TR01. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.Y.; Carter, S.R.; Greene, A.C. Artificial intelligence in pediatric surgery. In Seminars in Pediatric Surgery; Elsevier: Amsterdam, The Netherlands, 2024; p. 151390. [Google Scholar]
- Yue, W.; Zhang, J.; Hu, K.; Xia, Y.; Luo, J.; Wang, Z. Surgicalsam: Efficient class promptable surgical instrument segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 26–27 February 2024; pp. 6890–6898. [Google Scholar]
- Yellu, R.R.; Kukalakunta, Y.; Thunki, P. Medical Image Analysis-Challenges and Innovations: Studying challenges and innovations in medical image analysis for applications such as diagnosis, treatment planning, and image-guided surgery. J. Artif. Intell. Res. Appl. 2024, 4, 93–100. [Google Scholar]
- Liu, S.; Yue, W.; Guo, Z.; Wang, L. Multi-branch CNN and grouping cascade attention for medical image classification. Sci. Rep. 2024, 14, 15013. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Zhao, E.J.; Lam, C.K.; Rubin, D.L. Segmentation-assisted fully convolutional neural network enhances deep learning performance to identify proliferative diabetic retinopathy. J. Clin. Med. 2023, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.-W.; Heng, P.-A. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Huang, S.-T.; Chu, Y.-C.; Liu, L.-R.; Yao, W.-T.; Chen, Y.-F.; Yu, C.-M.; Yu, C.-M.; Tung, K.-Y.; Chiu, H.-W.; Tsai, M.-F.; et al. Deep learning-based clinical wound image analysis using a mask R-CNN architecture. J. Med. Biol. Eng. 2023, 43, 417–426. [Google Scholar] [CrossRef]
- Xia, G.; Ran, T.; Wu, H.; Wang, M.; Pan, J. The development of mask R-CNN to detect osteosarcoma and oste-ochondroma in X-ray radiographs. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2023, 11, 1869–1875. [Google Scholar] [CrossRef]
- Salh, C.H.; Ali, A.M. Automatic detection of breast cancer for mastectomy based on MRI images using Mask R-CNN and Detectron2 models. Neural Comput. Appl. 2024, 36, 3017–3035. [Google Scholar] [CrossRef]
- Li, X.; Young, A.S.; Raman, S.S.; Lu, D.S.; Lee, Y.-H.; Tsao, T.-C.; Wu, H.H. Automatic needle tracking using Mask R-CNN for MRI-guided percutaneous interventions. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1673–1684. [Google Scholar] [CrossRef] [PubMed]
- Brower, V. The cutting edge in surgery. EMBO Rep. 2002, 3, 300–301. [Google Scholar] [CrossRef]
- Chrysovergis, I.; Kamarianakis, M.; Kentros, M.; Angelis, D.; Protopsaltis, A.; Papagiannakis, G. Assessing unconstrained surgical cuttings in VR using CNNs. arXiv 2022, arXiv:2205.00934. [Google Scholar]
- Rianto, S.; Li, L. Fluid dynamic visualisations of cuttings-bleeding for virtual reality heart beating surgery simulation. In Proceedings of the Thirty-Third Australasian Conferenc on Computer Science, Brisbane, Australia, 18–22 January 2010; Volume 102, pp. 53–60. [Google Scholar]
- Jin, X.; Joldes, G.R.; Miller, K.; Yang, K.H.; Wittek, A. Meshless algorithm for soft tissue cutting in surgical simulation. Comput. Methods Biomech. Biomed. Eng. 2014, 17, 800–811. [Google Scholar] [CrossRef]
- Tang, H.; Chen, Y.; Wang, T.; Zhou, Y.; Zhao, L.; Gao, Q.; Du, M.; Tan, T.; Zhang, X.; Tong, T.J.; et al. HTC-Net: A hybrid CNN-transformer framework for medical image segmentation. Biomed. Signal Process. Control. 2024, 88, 105605. [Google Scholar] [CrossRef]
- Cartiaux, O.; Banse, X.; Paul, L.; Francq, B.G.; Aubin, C.-É.; Docquier, P.-L. Computer-assisted planning and navigation improves cutting accuracy during simulated bone tumor surgery of the pelvis. Comput. Aided Surg. 2013, 18, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Xiongbo, G.; Zhang, W.; Cai, L.; Yang, R.; Chen, H.; Cai, K. A novel approach of surface texture mapping for cone-beam computed tomography in image-guided surgical navigation. IEEE J. Biomed. Healh Inform. 2023, 28, 8. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.P., Jr.; Fontenot, L.; Stewart, C.; Kumbhare, D.; Guthikonda, B.; Hoang, S. Image-Guided Navigation in Spine Surgery: From Historical Developments to Future Perspectives. J. Clin. Med. 2024, 13, 2036. [Google Scholar] [CrossRef]
- Zeng, J.; Fu, Q. A review: Artificial intelligence in image-guided spinal surgery. Expert Rev. Med. Devices 2024, 21, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Hanna, G.; Kim, T.T.; Uddin, S.-A.; Ross, L.; Johnson, J.P. Video-assisted thoracoscopic image-guided spine surgery: Evolution of 19 years of experience, from endoscopy to fully integrated 3D navigation. Neurosurg. Focus 2021, 50, E8. [Google Scholar] [CrossRef]
- Ujiie, H.; Yamaguchi, A.; Gregor, A.; Chan, H.; Kato, T.; Hida, Y.; Kaga, K.; Wakasa, S.; Eitel, C.; Clapp, T.R. Developing a virtual reality simulation system for preoperative planning of thoracoscopic thoracic surgery. J. Thorac. Dis. 2021, 13, 778. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Hayashi, Y.; Kawaguchi, K.; Fukui, T.; Hakiri, S.; Ozeki, N.; Mori, S.; Goto, M.; Mori, K.; Yokoi, K. Clinical application of a surgical navigation system based on virtual thoracoscopy for lung cancer patients: Real time visualization of area of lung cancer before induction therapy and optimal resection line for obtaining a safe surgical margin during surgery. J. Thorac. Dis. 2020, 12, 672. [Google Scholar] [PubMed]
- Lopez-Lopez, V.; Sánchez-Esquer, I.; Crespo, M.J.; Navarro, M.Á.; Brusadin, R.; Conesa, A.L.; Barrios, A.N.; Miura, K.; Robles-Campos, R. Development and validation of advanced three-dimensional navigation device integrated in da Vinci Xi® surgical robot for hepatobiliary surgery: Pilot study. Br. J. Surg. 2023, 110, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Tzelnick, S.; Rampinelli, V.; Sahovaler, A.; Franz, L.; Chan, H.H.; Daly, M.J.; Irish, J.C. Skull-base surgery—A narrative review on current approaches and future developments in surgical navigation. J. Clin. Med. 2023, 12, 2706. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, K.; Chen, F.; Li, G.; Chen, X.; Yang, Q.; Li, N.; He, K.; Chen, F.; Tian, J. Intraoperative Fluorescence Visualization in Thoracoscopic Surgery. Ann. Thorac. Surg. 2022, 115, e79–e81. [Google Scholar] [CrossRef]
- Yoshida, R.; Yoshizako, T.; Tanaka, S.; Ando, S.; Nakamura, M.; Kishimoto, K.; Kitagaki, H. CT-guided color marking of impalpable pulmonary nodules prior to video-assisted thoracoscopic surgery. Clin. Imaging 2021, 74, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zheng, L.; Gu, L.; Yang, S.; Zhong, Z.; Zhang, G. InstrumentNet: An integrated model for real-time segmentation of intracranial surgical instruments. Comput. Biol. Med. 2023, 166, 107565. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Sugimoto, M.; Tanaka, Y.; Suetsugu, T.; Imai, T.; Hatanaka, Y.; Matsuhashi, N.; Takahashi, T.; Yamaguchi, K.; Yoshida, K. Holographic image-guided thoracoscopic surgery: Possibility of usefulness for esophageal cancer patients with abnormal artery. Esophagus 2020, 17, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Su, J. Based on the improved YOLOV3 small target detection algorithm. In Proceedings of 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20 June 2021; pp. 2155–2159. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef]
- Salehi, A.W.; Khan, S.; Gupta, G.; Alabduallah, B.I.; Almjally, A.; Alsolai, H.; Siddiqui, T.; Mellit, A. A study of CNN and transfer learning in medical imaging: Advantages, challenges, future scope. Sustainability 2023, 15, 5930. [Google Scholar] [CrossRef]
- Menghani, G. Efficient deep learning: A survey on making deep learning models smaller, faster, and better. ACM Comput. Surv. 2023, 55, 1–37. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Liao, T.; Li, L.; Ouyang, R.; Lin, X.; Lai, X.; Cheng, G.; Ma, J. Classification of asymmetry in mammography via the DenseNet convolutional neural network. Eur. J. Radiol. Open 2023, 11, 100502. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Gertych, A.; Ing, N.; Ma, Z.; Fuchs, T.J.; Salman, S.; Mohanty, S.; Bhele, S.; Velásquez-Vacca, A.; Amin, M.B.; Knudsen, B.S. Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Comput. Med. Imaging Graph. 2015, 46, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. Densenet: Implementing efficient convnet descriptor pyramids. arXiv 2014, arXiv:1404.1869. [Google Scholar]
) | ) | |
---|---|---|
Actual category () | True positive () | False negative () |
Actual category () | False positive () | True negative () |
JPM | JRP | JBV | JNT | mIOU | OPA | SMA | Time | |
---|---|---|---|---|---|---|---|---|
FCN-8s [54] | 78.5% | 75.4% | 80.6% | 82.2% | 76.8% | 83.1% | 82.8% | 24.4 |
DeepLab [25] | 64.4% | 51.5% | 63.9% | 61.1% | 59.5% | 74.4% | 57.9% | 27.2 |
U-Net [55] | 80.7% | 72.3% | 63.7% | 75.4% | 73.6% | 82.0% | 85.1% | 26.5 |
Manual traits [56] | 61.2% | 46.7% | 52.3% | N/A | 49.5% | 76.7% | 53.6% | 29.1 |
Channel R-CNN | 83.1% | 83.6% | 73.5% | 83.9% | 79.4% | 83.2% | 88.4% | 23.3 |
l1 | l2 | PSNR | mIOU | OPA | SMA | DC | Time | |
---|---|---|---|---|---|---|---|---|
DenseNet [57] | 2.1 | 0.2 | 35.62 | 61.2% | 73.9% | 72.7% | 69.6% | 20.4 |
+TNH | 1.8 | 0.2 | 35.74 | 63.4% | 76.3% | 75.1% | 73.7% | 21.2 |
+Leapfrog | 1.6 | 0.1 | 35.97 | 70.5% | 78.1% | 80.2% | 81.3% | 21.8 |
Mask R-CNN [15] | 1.7 | 0.1 | 35.83 | 68.6% | 77.5% | 79.7% | 80.2% | 22.1 |
U-Net [55] | 1.7 | 0.3 | 34.48 | 67.5% | 77.4% | 78.2% | 80.5% | 24.7 |
Events [%] | Frames | Time [s] | t/Frame (ms) | ||||
---|---|---|---|---|---|---|---|
AO | TO | PO | CV | ||||
v1 | 35.09 | 23.11 | 13.28 | 28.52 | 634 | 26.41 | 41.6 |
v2 | 25.04 | 42.93 | 26.56 | 5.47 | 515 | 21.45 | 41.7 |
v3 | 31.89 | 24.23 | 19.49 | 24.39 | 798 | 33.25 | 41.7 |
v4 | 32.78 | 18.17 | 16.92 | 32.13 | 606 | 25.25 | 41.7 |
v5 | 19.09 | 39.45 | 21.73 | 19.73 | 1320 | 55.00 | 41.7 |
v6 | 26.37 | 42.76 | 14.61 | 16.26 | 493 | 20.54 | 41.6 |
v7 | 22.29 | 38.06 | 15.57 | 24.08 | 508 | 21.16 | 41.7 |
v8 | 16.54 | 48.48 | 9.27 | 25.71 | 284 | 11.83 | 41.7 |
v1 | v2 | v3 | v4 | v5 | v6 | v7 | v8 | ||
---|---|---|---|---|---|---|---|---|---|
Time (ms) | CON | 27 | 26 | 24 | 24 | 23 | 26 | 24 | 24 |
CUR | 23 | 22 | 23 | 21 | 22 | 23 | 22 | 23 | |
mIOU | CON | 78.3% | 82.5% | 79.6% | 76.1% | 73.8% | 80.7% | 83.4% | 80.9% |
CUR | 71.8% | 70.3% | 68.6% | 72.1% | 73.4% | 72.2% | 70.6% | 69.2% | |
OPA | CON | 77.4% | 83.7% | 84.5% | 83.2% | 81.1% | 82.6% | 83.8% | 81.0% |
CUR | 78.5% | 77.0% | 76.1% | 78.4% | 80.6% | 77.3% | 77.5% | 79.1% | |
SMA | CON | 90.1% | 86.8% | 85.7% | 91.2% | 88.5% | 86.2% | 89.5% | 88.7% |
CUR | 78.2% | 79.8% | 80.7% | 78.4% | 78.6% | 79.0% | 78.3% | 80.6% | |
DC | CON | 86.9% | 89.2% | 90.9% | 84.6% | 88.1% | 89.3% | 90.8% | 88.8% |
CUR | 80.4% | 76.5% | 80.8% | 79.1% | 81.6% | 80.7% | 81.2% | 80.4% |
Questions | D1 | D2 | D3 | D4 | D5 | Mean | Standard Deviation |
---|---|---|---|---|---|---|---|
1 | 8.5 | 9.8 | 9.4 | 9.9 | 8.4 | 9.2 | 0.64 |
2 | 8.3 | 8.9 | 8.4 | 8.6 | 8.8 | 8.6 | 0.23 |
3 | 8.1 | 7.7 | 7.5 | 7.9 | 7.3 | 7.7 | 0.29 |
4 | 8.0 | 8.5 | 8.9 | 8.5 | 8.0 | 8.4 | 0.37 |
5 | 8.5 | 7.5 | 8.5 | 7.9 | 8.6 | 8.2 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Chen, Y.; Jia, D.; Zhang, B. Image Navigation System for Thoracoscopic Surgeries Driven by Nuclear Medicine Utilizing Channel R-CNN. Appl. Sci. 2025, 15, 1443. https://doi.org/10.3390/app15031443
Zhang C, Chen Y, Jia D, Zhang B. Image Navigation System for Thoracoscopic Surgeries Driven by Nuclear Medicine Utilizing Channel R-CNN. Applied Sciences. 2025; 15(3):1443. https://doi.org/10.3390/app15031443
Chicago/Turabian StyleZhang, Chuanwang, Yueyuan Chen, Dongyao Jia, and Bo Zhang. 2025. "Image Navigation System for Thoracoscopic Surgeries Driven by Nuclear Medicine Utilizing Channel R-CNN" Applied Sciences 15, no. 3: 1443. https://doi.org/10.3390/app15031443
APA StyleZhang, C., Chen, Y., Jia, D., & Zhang, B. (2025). Image Navigation System for Thoracoscopic Surgeries Driven by Nuclear Medicine Utilizing Channel R-CNN. Applied Sciences, 15(3), 1443. https://doi.org/10.3390/app15031443