Pharmacokinetics and Tissue Distribution of Enavogliflozin in Mice Using a Validated Liquid Chromatography–Tandem Mass Spectrometry Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of the Stock and Working Solutions
2.3. Preparation of Calibration Standards and Quality Control Samples
2.4. Instrument Conditions
2.5. Methodological Validation
2.6. Animals and Ethical Statement
2.7. Pharmacokinetics Study
2.8. Tissue Distribution Study
2.9. Data Analysis and Statistics
3. Results
3.1. LC–MS/MS Analysis of Enavogliflozin
3.2. Selectivity and Linearity
3.3. Precision and Accuracy
3.4. Matrix Effect and Recovery
3.5. Stability
3.6. Pharmacokinetics of Enavogliflozin in Fed and Fasted Mice
3.7. Pharmacokinetics of Enavogliflozin Following Single or Repeated Oral Administration
3.8. Enavogliflozin Tissue Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ghezzi, C.; Loo, D.D.F.; Wright, E.M. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 2018, 61, 2087–2097. [Google Scholar] [CrossRef] [PubMed]
- Chao, E.C.; Henry, R.R. SGLT2 inhibition—A novel strategy for diabetes treatment. Nat. Rev. Drug Discov. 2010, 9, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.M. SGLT2 Inhibitors: Physiology and Pharmacology. Kidney360 2021, 2, 2027–2037. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Cai, C.; Liu, C.; Liu, D.; Li, G.; Linhardt, R.J.; Yu, G. Recent progress and advanced technology in carbohydrate-based drug development. Curr. Opin. Biotechnol. 2021, 69, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Kell, P.; Sidhu, R.; Qian, M.; Mishra, S.; Nicoli, E.R.; D’Souza, P.; Tifft, C.J.; Gross, A.L.; Gray-Edwards, H.L.; Martin, D.R.; et al. A pentasaccharide for monitoring pharmacodynamic response to gene therapy in GM1 gangliosidosis. eBioMedicine 2023, 92, 104627. [Google Scholar] [CrossRef]
- Jansen, L.M.; Hendriks, V.C.A.; Bentlage, H.; Ranoux, A.; Raaijmakers, H.W.C.; Boltje, T.J. The industrial application potential of sugar beet pulp derived monosaccharides d-galacturonic acid and l-arabinose. Chembiochem 2024, 25, e202400521. [Google Scholar] [CrossRef]
- Choi, M.K.; Nam, S.J.; Ji, H.Y.; Park, M.J.; Choi, J.S.; Song, I.S. Comparative pharmacokinetics and pharmacodynamics of a novel sodium-glucose cotransporter 2 inhibitor, DWP16001, with dapagliflozin and ipragliflozin. Pharmaceutics 2020, 12, 268. [Google Scholar] [CrossRef]
- Kim, M.S.; Song, Y.K.; Choi, J.S.; Ji, H.Y.; Yang, E.; Park, J.S.; Kim, H.S.; Kim, M.J.; Cho, I.K.; Chung, S.J.; et al. Physiologically based pharmacokinetic modelling to predict pharmacokinetics of enavogliflozin, a sodium-dependent glucose transporter 2 inhibitor, in humans. Pharmaceutics 2023, 15, 942. [Google Scholar] [CrossRef]
- Pang, M.; Jeon, S.Y.; Choi, M.K.; Jeon, J.H.; Ji, H.Y.; Choi, J.S.; Song, I.S. Pharmacokinetics and tissue distribution of enavogliflozin in mice and mice. Pharmaceutics 2022, 14, 1210. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, D.K.; Choi, W.G.; Ji, H.Y.; Choi, J.S.; Song, I.S.; Lee, S.; Lee, H.S. In vitro metabolism of DWP16001, a novel sodium-glucose cotransporter 2 Inhibitor, in human and animal hepatocytes. Pharmaceutics 2020, 12, 865. [Google Scholar] [CrossRef]
- Hwang, J.G.; Lee, S.; Huh, W.; Han, J.; Oh, J.; Jang, I.J.; Yu, K.S. Dose-dependent glucosuria of DWP16001, a novel selective sodium-glucose cotransporter-2 inhibitor, in healthy subjects. Br. J. Clin. Pharmacol. 2022, 88, 4100–4110. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.H.; Han, K.A.; Kim, K.S.; Yu, J.M.; Kim, E.; Won, J.C.; Kang, J.G.; Chung, C.H.; Oh, S.; Choi, S.H.; et al. Efficacy and safety of enavogliflozin, a novel SGLT2 inhibitor, in Korean people with type 2 diabetes: A 24-week, multicentre, randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes Metab. 2023, 25, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Tahara, A.; Takasu, T.; Yokono, M.; Imamura, M.; Kurosaki, E. Characterization and comparison of sodium-glucose cotrans-porter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. J. Pharmacol. Sci. 2016, 130, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Han, K.A.; Kim, T.N.; Park, C.Y.; Park, J.H.; Kim, S.Y.; Kim, Y.H.; Song, K.H.; Kang, E.S.; Kim, C.S.; et al. Efficacy and safety of enavogliflozin versus dapagliflozin added to metformin plus gemigliptin treatment in patients with type 2 diabetes: A double-blind, randomized, comparator-active study: ENHANCE-D study. Diabetes Metab. 2023, 49, 101440. [Google Scholar] [CrossRef]
- Watada, H.; Shiramoto, M.; Ueda, S.; Tang, W.; Asano, M.; Thorén, F.; Kim, H.; Yajima, T.; Boulton, D.W.; Araki, E. Pharmacokinetics and pharmacodynamics of dapagliflozin in combination with insulin in Japanese patients with type 1 diabetes. Diabetes Obes. Metab. 2019, 21, 876–882. [Google Scholar] [CrossRef]
- Dutta, D.; Harish, B.G.; Anne, B.; Nagendra, L. Role of novel sodium glucose co-transporter-2 inhibitor enavogliflozin in type-2 diabetes: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2023, 17, 102816. [Google Scholar] [CrossRef]
- Vasquez-Rios, G.; Nadkarni, G.N. SGLT2 inhibitors: Emerging roles in the protection against cardiovascular and kidney disease among diabetic patients. Int. J. Nephrol. Renov. Dis. 2020, 13, 281. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef]
- Fu, W.J.; Huo, J.L.; Mao, Z.H.; Pan, S.K.; Liu, D.W.; Liu, Z.S.; Wu, P.; Gao, Z.X. Emerging role of antidiabetic drugs in cardiorenal protection. Front. Pharmacol. 2024, 15, 1349069. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, B.; Han, M.; Rhee, W.J.; Kwak, M.S.; Yoo, T.H.; Shin, J.S. Canagliflozin protects against cisplatin-induced acute kidney injury by AMPK-mediated autophagy in renal proximal tubular cells. Cell Death Discov. 2022, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.T.; Sharkawi, S.M.Z.; Hassan, M.I.A.; Abo-Youssef, A.M.; Hemeida, R.A.M. Empagliflozin and neohesperidin protect against methotrexate-induced renal toxicity via suppression of oxidative stress and inflammation in male rats. Food Chem. Toxicol. 2021, 155, 112406. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Li, S.S.; He, Y.X.; Yan, L.J.; Lv, F.; Liang, Q.M.; Gan, Y.H.; Han, L.P.; Xu, H.D.; Li, Y.C.; et al. SGLT2 inhibitors alleviated podocyte damage in lupus nephritis by decreasing inflammation and enhancing autophagy. Ann. Rheum. Dis. 2023, 82, 1328–1340. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, T.; Sun, F.; Liu, Z.; Zhang, D.; Teng, X.; Morel, L.; Wang, X.; Ye, S. Safety and efficacy of the SGLT2 inhibitor dapagliflozin in patients with systemic lupus erythematosus: A phase I/II trial. RMD Open 2022, 8, e002686. [Google Scholar] [CrossRef]
- Jang, M.; Kang, M.; Lee, E.; Shin, D. Ocular and plasma pharmacokinetics of enavogliflozin ophthalmic solution in preclinical species. Pharmaceuticals 2024, 17, 111. [Google Scholar] [CrossRef]
- Wakisaka, M.; Nagao, T. Sodium glucose cotransporter 2 in mesangial cells and retinal pericytes and its implications for diabetic nephropathy and retinopathy. Glycobiology 2017, 27, 691–695. [Google Scholar] [CrossRef]
- May, M.; Framke, T.; Junker, B.; Framme, C.; Pielen, A.; Schindler, C. How and why SGLT2 inhibitors should be explored as potential treatment option in diabetic retinopathy: Clinical concept and methodology. Ther. Adv. Endocrinol. Metab. 2019, 10, 2042018819891886. [Google Scholar] [CrossRef]
- Dhakal, B.; Shiwakoti, S.; Park, E.Y.; Kang, K.W.; Schini-Kerth, V.B.; Park, S.H.; Ji, H.Y.; Park, J.S.; Ko, J.Y.; Oak, M.H. SGLT2 inhibition ameliorates nano plastics-induced premature endothelial senescence and dysfunction. Sci. Rep. 2023, 13, 6256. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Verma, S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review. Basic Transl. Sci. 2020, 5, 632–644. [Google Scholar] [CrossRef]
- Rhee, B.; Mahbubur, R.M.; Jin, C.; Choi, J.S.; Lim, H.W.; Huh, W.; Park, J.S.; Han, J.; Kim, S.; Lee, Y.; et al. Evaluation of safety and anti-obesity effects of DWP16001 in naturally obese dogs. BMC Vet. Res. 2022, 18, 237. [Google Scholar] [CrossRef]
- Côté, C.; Bergeron, A.; Mess, J.N.; Furtado, M.; Garofolo, F. Matrix effect elimination during LC–MS/MS bioanalytical method development. Bioanalysis 2009, 1, 1243–1257. [Google Scholar] [CrossRef] [PubMed]
- Pilařová, V.; Plachká, K.; Svec, F.; Nováková, L. Matrix effects in ultra-high performance supercritical fluid chromatography-mass spectrometry analysis of vitamin E in plasma: The effect of sample preparation and data processing. Talanta 2024, 280, 126658. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.Y.; Pang, M.; Lee, J.; Lee, J.; Jeon, J.H.; Park, J.H.; Choi, M.K.; Song, I.S. Enhanced bioavailability and hepatoprotective effect of silymarin by preparing silymarin-loaded solid dispersion formulation using freeze-drying method. Arch. Pharm. Res. 2022, 45, 743–760. [Google Scholar] [CrossRef] [PubMed]
- Kadry, H.; Noorani, B.; Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020, 17, 69. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, W.; Hao, Y.; Peng, Z.; Zou, Z.; Wei, J.; Zhou, Y.; Liang, W.; Cao, Y. The SGLT2 inhibitor dapagliflozin ameliorates renal fibrosis in hyperuricemic nephropathy. Cell Rep. Med. 2024, 5, 101690. [Google Scholar] [CrossRef]
- Lee, S.J.; Bae, S.H.; Jeon, S.; Ji, H.Y.; Han, S. Combined translational pharmacometrics approach to support the design and conduct of the first-in-human study of DWP16001. Br. J. Clin. Pharmacol. 2024, 90, 286–298. [Google Scholar] [CrossRef]
- Modzelewski, K.L.; Pipilas, A.; Bosch, N.A. Comparative outcomes of empagliflozin to dapagliflozin in patients with heart failure. JAMA Netw. Open 2024, 7, e249305. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
Nominal Concentration (ng/mL) | Calculated Concentration (ng/mL) | Accuracy (%) | CV (%) |
---|---|---|---|
5 | 5.073 ± 0.069 | 101.5 | 1.351 |
20 | 19.13 ± 1.351 | 95.66 | 7.062 |
50 | 48.54 ± 3.127 | 97.08 | 6.442 |
150 | 143.2 ± 3.976 | 95.50 | 2.778 |
500 | 487.2 ± 24.43 | 97.44 | 5.015 |
1000 | 1046 ± 33.41 | 104.6 | 3.196 |
3000 | 3234 ± 101.0 | 107.8 | 3.124 |
Nominal Concentration (ng/mL) | Measured Concentration (ng/mL) | Precision (CV, %) | Accuracy (%) | |
---|---|---|---|---|
Intra-day (n = 6) | 5 | 5.376 ± 0.386 | 4.601 | 110.4 |
15 | 14.85 ± 0.844 | 5.680 | 99.00 | |
250 | 247.2 ± 16.19 | 6.551 | 98.88 | |
2000 | 2237 ± 61.09 | 2.731 | 111.8 | |
Inter-day (n = 5) | 5 | 5.520 ± 0.254 | 7.186 | 107.5 |
15 | 14.15 ± 0.831 | 5.876 | 94.31 | |
250 | 248.2 ± 10.43 | 4.201 | 99.29 | |
2000 | 2117 ± 170.3 | 8.043 | 105.8 |
Analyte | Nominal Concentration (ng/mL) | Extraction Recovery (%) (n = 3) | CV (%) | Matrix Effects (%) (n = 6) | CV (%) |
---|---|---|---|---|---|
Enavogliflozin | 15 | 88.79 ± 2.654 | 2.989 | 99.09 ± 5.104 | 5.151 |
250 | 81.82 ± 2.861 | 3.497 | 103.6 ± 3.449 | 3.329 | |
2000 | 79.75 ± 3.190 | 4.000 | 103.2 ± 1.126 | 1.091 | |
IS | 200 | 85.76 ± 5.879 | 6.856 | 96.93 ± 6.236 | 6.433 |
Nominal Concentration (ng/mL) | Measured Concentration (ng/mL) | Precision (%) | Accuracy (%) |
---|---|---|---|
Autosampler stability (10 °C, 24 h) | |||
15 | 15.52 ± 0.907 | 5.846 | 103.5 |
250 | 255.8 ± 13.38 | 5.232 | 102.3 |
2000 | 1853 ± 54.45 | 2.939 | 92.63 |
Freeze–thaw stability (3 cycles) | |||
15 | 15.55 ± 0.382 | 2.454 | 103.6 |
250 | 255.2 ± 10.07 | 3.945 | 102.1 |
2000 | 1716 ± 38.61 | 2.250 | 85.81 |
Bench-top stability (25 °C, 6 h) | |||
15 | 15.03 ± 0.437 | 2.905 | 100.2 |
250 | 227.7 ± 11.56 | 5.074 | 91.09 |
2000 | 1711 ± 32.69 | 1.911 | 85.56 |
Parameter | Group | p Value | |
---|---|---|---|
Fed | Fasted | ||
Tmax (h) | 1.800 ± 0.447 | 1.600 ± 0.548 | 0.690 |
Cmax (ng/mL) | 261.7 ± 23.60 | 228.7 ± 93.06 | 0.222 |
T1/2 (h) | 4.403 ± 0.228 | 4.449 ± 0.577 | 0.841 |
AUClast (h·ng/mL) | 1772 ± 174.2 | 1633 ± 275.9 | 0.347 |
AUC∞ (h·ng/mL) | 1809 ± 179.4 | 1671 ± 280.9 | 0.421 |
MRT (h) | 5.991 ± 0.386 | 6.087 ± 0.651 | 0.841 |
Parameter | Dose | p Value | ||
---|---|---|---|---|
Single | Repeated for 7 Days | Repeated for 14 Days | ||
Tmax (h) | 2.400 ± 0.894 | 2.000 ± 0.000 | 1.600 ± 0.548 | 0.105 |
Cmax (ng/mL) | 253.4 ± 28.69 | 258.5 ± 28.22 | 257.0 ± 74.37 | 0.914 |
T1/2 (h) | 3.949 ± 0.674 | 4.070 ± 0.419 | 4.272 ± 0.554 | 0.357 |
AUClast (h·ng/mL) | 2047 ± 389.1 | 1934 ± 253.7 | 2066 ± 516.8 | 0.533 |
AUC∞ (h·ng/mL) | 2074 ± 380.4 | 1966 ± 263.9 | 2106 ± 506.3 | 0.613 |
MRT (h) | 5.867 ± 0.242 | 5.763 ± 0.583 | 6.220 ± 0.368 | 0.174 |
Dose | Tissue | Tmax (h) | T1/2 (h) | AUC∞/Dose (h·μg/g Tissue/Dose) | AUC Ratio |
---|---|---|---|---|---|
1 mg/kg | plamsa | 1.917 ± 1.20 | 3.462 ± 0.24 | 1.340 ± 0.26 | 1.000 ± 0.00 |
stomach | 1.250 ± 1.37 | 4.557 ± 0.77 | 14.60 ± 6.60 | 11.94 ± 7.25 | |
small intestine | 1.167 ± 1.40 | 3.055 ± 0.76 | 11.74 ± 3.77 | 8.961 ± 2.95 | |
large intestine | 5.000 ± 2.45 | 5.559 ± 1.57 | 12.11 ± 3.41 | 9.461 ± 3.92 | |
kidney | 3.000 ± 1.10 | 20.78 ± 0.65 | 92.88 ± 7.02 | 71.56 ± 14.2 | |
liver | 0.833 ± 0.61 | 6.627 ± 1.30 | 8.077 ± 1.14 | 6.089 ± 0.45 | |
heart | 2.167 ± 0.98 | 4.804 ± 1.61 | 2.213 ± 0.34 | 1.672 ± 0.34 | |
lung | 1.667 ± 1.33 | 7.090 ± 1.49 | 2.580 ± 0.28 | 1.954 ± 0.19 | |
spleen | 2.250 ± 1.47 | 3.608 ± 0.39 | 0.353 ± 0.11 | 0.259 ± 0.04 | |
testis | 5.667 ± 2.66 | 11.26 ± 1.11 | 0.767 ± 0.17 | 0.575 ± 0.09 | |
3 mg/kg | plasma | 0.917 ± 0.20 | 4.186 ± 1.37 | 1.386±0.43 | 1.000 ± 0.00 |
stomach | 0.917 ± 0.58 | 5.366 ± 0.70 | 15.76 ± 4.97 | 12.63 ± 6.50 | |
small intestine | 0.833 ± 0.26 | 2.974 ± 0.63 | 12.425 ± 2.92 | 9.970 ± 4.64 | |
large intestine | 6.333 ± 2.66 | 4.866 ± 0.64 | 18.69 ± 8.61 | 14.79 ± 8.11 | |
kidney | 1.167 ± 0.41 ** | 17.59 ± 0.48 *** | 35.49 ± 1.22 *** | 28.64 ± 11.9 *** | |
liver | 0.917 ± 0.20 | 5.771 ± 0.53 | 8.033 ± 1.30 | 6.214 ± 1.79 | |
heart | 0.917 ± 0.20 * | 5.370 ± 5.06 | 2.407 ± 0.95 | 1.730 ± 0.33 | |
lung | 0.917 ± 0.20 | 6.266 ± 0.31 | 2.354 ± 0.20 | 1.849 ± 0.60 | |
spleen | 0.917 ± 0.20 | 3.720 ± 0.85 | 0.583 ± 0.33 | 0.431 ± 0.19 | |
testis | 8.000 ± 0.00 | 11.19 ± 2.00 | 0.862 ± 0.13 | 0.704 ± 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, M.; Lee, J.; Choi, M.-K.; Song, I.-S. Pharmacokinetics and Tissue Distribution of Enavogliflozin in Mice Using a Validated Liquid Chromatography–Tandem Mass Spectrometry Method. Appl. Sci. 2025, 15, 1445. https://doi.org/10.3390/app15031445
Pang M, Lee J, Choi M-K, Song I-S. Pharmacokinetics and Tissue Distribution of Enavogliflozin in Mice Using a Validated Liquid Chromatography–Tandem Mass Spectrometry Method. Applied Sciences. 2025; 15(3):1445. https://doi.org/10.3390/app15031445
Chicago/Turabian StylePang, Minyeong, Jihoon Lee, Min-Koo Choi, and Im-Sook Song. 2025. "Pharmacokinetics and Tissue Distribution of Enavogliflozin in Mice Using a Validated Liquid Chromatography–Tandem Mass Spectrometry Method" Applied Sciences 15, no. 3: 1445. https://doi.org/10.3390/app15031445
APA StylePang, M., Lee, J., Choi, M.-K., & Song, I.-S. (2025). Pharmacokinetics and Tissue Distribution of Enavogliflozin in Mice Using a Validated Liquid Chromatography–Tandem Mass Spectrometry Method. Applied Sciences, 15(3), 1445. https://doi.org/10.3390/app15031445