Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices
Abstract
:1. Introduction
2. Optical Packaging
2.1. Fiber-to-PIC Coupling
2.1.1. Edge-Coupling
2.1.2. Grating-Coupling
2.1.3. Evanescent-Coupling
2.2. Laser-to-PIC Integration
2.2.1. Micro-Optical Bench
2.2.2. VCSEL Integration
3. Electronic Packaging
3.1. High-Speed Routing
3.2. Vertical Integration
4. Thermal Management of PICs
5. Emerging Technologies for Photonics Packaging
6. Discussion of Trends in Photonics Packaging
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Streshinsky, M.; Ding, R.; Liu, Y.; Novack, A.; Galland, C.; Lim, A.; Guo-Qiang, P.L.; Baehr-Jones, T.; Hochberg, M. The road to affordable, large-scale silicon photonics. Opt. Photon. News 2013, 24, 32–39. [Google Scholar] [CrossRef]
- Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Arakawa, Y.; Nakamura, T.; Urino, Y.; Fujita, T. Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 2013, 51, 72–77. [Google Scholar] [CrossRef]
- Tsybeskov, L.; Lockwood, D.J.; Ichikawa, M. Silicon photonics: CMOS going optical [Scanning the Issue]. Proc. IEEE 2009, 97, 1161–1165. [Google Scholar] [CrossRef]
- Sun, C.; Wade, M.T.; Lee, Y.; Orcutt, J.S.; Alloatti, L.; Georgas, M.S.; Waterman, A.S.; Shainline, J.M.; Avizienis, R.R.; Lin, S.; et al. Single-chip microprocessor that communicates directly using light. Nature 2015, 528, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Integrated Silicon Photonics ICs with MPW Service. Available online: http://www2.imec.be/be_en/services-and-solutions/silicon-photonics.html (accessed on 15 October 2016).
- CEA-LETI Full Platform in MPW. Available online: http://www-leti.cea.fr/en/How-to-collaborate/Focus-on-Technologies/Integrated-silicon-photonics (accessed on 15 October 2016).
- Silicon Photonics Multiple-Projects Wafer. Available online: http://www.a-star.edu.sg/ime/SERVICES/silicon_photonics_multi-projects-wafer.aspx (accessed on 1 December 2016).
- Zimmermann, L.; Preve, G.B.; Tekin, T.; Rosin, T.; Landles, K. Packaging and assembly for integrated photonics—Review of the ePIXpack photonics packaging platform. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 645–651. [Google Scholar] [CrossRef]
- Kopp, C.; Bernabé, S.; Bakir, B.B.; Fedeli, J.-M.; Orobtchouk, R.; Schrank, F.; Porte, H.; Zimmermann, L.; Tekin, T. Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 498–509. [Google Scholar] [CrossRef]
- O’Brien, P.; Carroll, L.; Eason, C.; Lee, J.-S. Packaging of Silicon Photonic Devices. In Silicon Photonics III; Pavesi, L., Lockwood, D.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 122, pp. 217–236. [Google Scholar]
- Lee, J.-S.; Carroll, L.; Scarcella, C.; Pavarelli, N.; Menezo, S.; Bernabe, S.; Temporiti, E.; O’Brien, P. Meeting the electrical, optical, and thermal design challenges of photonic-packaging. IEEE J. Sel. Top. Quantum Electron. 2016, 22. [Google Scholar] [CrossRef]
- Taillaert, D.; Van Laere, F.; Ayre, M.; Bogaerts, W.; Van Thourhout, D.; Bienstman, P.; Baets, R. Grating couplers for coupling between optical fibers and nanophotonic wave-guides. Jpn. J. Appl. Phys. 2006, 45, 6071–6077. [Google Scholar] [CrossRef]
- Taillaert, D.; Chong, H.; Borel, P.I.; Frandsen, L.H.; De La Rue, R.M.; Baets, R. A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photonics Technol. Lett. 2003, 15, 1249–1251. [Google Scholar] [CrossRef]
- Fukuda, H.; Yamada, K.; Tsuchizawa, T.; Watanabe, T.; Shinojima, H.; Itabashi, S. Silicon photonic circuit with polarization diversity. Opt. Express 2008, 16, 4872–4880. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Fernando, H.; Roycroft, B.; Corbett, B.; Peters, F. Practical Design of Lensed Fibers for Semiconductor Laser Packaging Using Laser Welding Technique. J. Lightwave Technol. 2009, 27, 1533–1539. [Google Scholar] [CrossRef]
- McNab, S.; Moll, N.; Vlasov, Y. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 2003, 11, 2927–2939. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Tsuchizawa, T.; Watanabe, T.; Yamada, K.; Morita, H. Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers. Electron. Lett. 2002, 38, 1669–1670. [Google Scholar] [CrossRef]
- Pu, M.; Liu, L.; Ou, H.; Yvind, K.; Hvam, J.M. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide. Opt. Commun. 2010, 283, 3678–3682. [Google Scholar] [CrossRef]
- Galán, J.; Sanchis, P.; Sánchez, G.; Martí, J. Polarization insensitive low-loss coupling technique between SOI waveguides and high mode field diameter single-mode fibers. Opt. Express 2007, 15, 7058–7065. [Google Scholar] [CrossRef] [PubMed]
- Romero-Garcıa, S.; Marzban, B.; Merget, F.; Shen, B.; Witzens, J. Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III–V lasers with SOI waveguides. IEEE J. Sel. Top. Quantum Electron. 2014, 20. [Google Scholar] [CrossRef]
- Papes, M.; Cheben, P.; Ye, W.N.; Schmid, J.H.; Xu, D.X.; Janz, S.; Benedikovic, D.; Ramos, C.A.; Halir, R.; Ortega-Moñux, A.; et al. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides. In Proceedings of the SPIE (9516), Integrated Optics: Physics and Simulations II (95160K), Prague, Czech Republic, 1 May 2015.
- Solutions for Si-Photonics Connection. Available online: http://www.teemphotonics.com/ioc/offer-and-products/solutions-for-si-photonics-connection.html (accessed on 15 October 2016).
- Van Laere, F.; Claes, T.; Schrauwen, J.; Scheerlinck, S.; Bogaerts, W.; Taillaert, D.; O’Faolain, L.; Van Thourhout, D.; Baets, R. Compact focusing grating couplers for silicon-on-insulator integrated circuits. IEEE Photonics Technol. Lett. 2007, 19, 1919–1921. [Google Scholar] [CrossRef]
- Roelkens, G.; Vermeulen, D.; Selvaraja, S.; Halir, R.; Bogaerts, W.; Van Thourhout, D. Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 571–580. [Google Scholar] [CrossRef]
- Snyder, B.; O’Brien, P. Planar fiber packaging method for silicon photonic integrated circuits. In Proceedings of the Optical Fiber Communication Conference, Optical Society of America (OM2E.5), Los Angeles, CA, USA, 4–8 March 2012.
- Li, C.; Chee, K.; Tao, J.; Zhang, H.; Yu, M.; Lo, G. Silicon photonics packaging with lateral fiber coupling to apodized grating coupler embedded circuit. Opt. Express 2014, 22, 24235–24240. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, D.; Selvaraja, S.; Verheyen, P.; Lepage, G.; Bogaerts, W.; Absil, P.; Van Thourhout, D.; Roelkens, G. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform. Opt. Express 2010, 18, 18278–18283. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Chao Li, L.; Fung, C.K.Y.; Lo, S.M.G.; Tsang, H.K. Apodized waveguide grating couplers for efficient coupling to optical fibers. IEEE Photonics Technol. Lett. 2010, 22, 1156–1158. [Google Scholar]
- Zaoui, W.S.; Kunze, A.; Vogel, W.; Berroth, M.; Butschke, J.; Letzkus, F.; Burghartz, J. Bridging the gap between optical fibers and silicon photonic integrated circuits. Opt. Express 2014, 22, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Vanslembrouck, M.; Dumon, P.; Van Thourhout, D.; Bogaerts, W. Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs. Opt. Express 2012, 20, B493–B500. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.; Gerace, D.; Cristiani, I.; Menezo, S.; Andreani, L. Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics. Opt. Express 2013, 21, 21556–21568. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.; Gerace, D.; Cristiani, I.; Andreani, L. Optimizing polarization-diversity couplers for Si-photonics: reaching the −1 dB coupling efficiency threshold. Opt. Express 2014, 22, 14769–14781. [Google Scholar] [CrossRef] [PubMed]
- Snyder, B.; O’Brien, P. Packaging process for grating-coupled silicon photonic wave-guides using angle-polished fibers. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 954–959. [Google Scholar] [CrossRef]
- Pavarelli, N.; Lee, J.-S.; Rensing, M.; Scarcella, C.; Zhou, S.; Ossieur, P.; O’Brien, P. Optical and Electronic Packaging Processes for Silicon Photonic Systems. J. Lightwave Technol. 2015, 33, 991–997. [Google Scholar] [CrossRef]
- Dangel, R.; Hofrichter, J.; Horst, F.; Jubin, D.; La Porta, A.; Meier, N.; Soganci, I.; Weiss, J.; Offrein, B. Polymer waveguides for electro-optical integration in data centers and high-performance computers. Opt. Express 2015, 23, 4736–4750. [Google Scholar] [CrossRef] [PubMed]
- Van Campenhout, J.; Rojo Romeo, P.; Regreny, P.; Seassal, C.; Van Thourhout, D.; Verstuyft, S.; Di Cioccio, L.; Fedeli, J.; Lagahe, C.; Baets, R. Electrically pumped in P-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 2007, 15, 6744–6749. [Google Scholar] [CrossRef] [PubMed]
- Keyvaninia, S.; Roelkens, G.; Van Thourhout, D.; Jany, C.; Lamponi, M.; Le Liepvre, A.; Lelarge, F.; Make, D.; Duan, G.; Bordel, D.; et al. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. Opt. Express 2013, 21, 3784–3792. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Fang, A.W.; Cohen, O.; Jones, R.; Paniccia, M.J.; Bowers, J.E. A Hybrid Al-Gainas-Silicon evanescent amplifier. IEEE Photonics Technol. Lett. 2007, 19, 230–232. [Google Scholar] [CrossRef]
- Mack, M.; Peterson, M.; Gloeckner, S.; Narasimha, A.; Koumans, R.; De Dobbelaere, P. Method and System for a Light Source Assembly Supporting Direct Coupling to an Integrated Circuit. US Patent 8,168,939 B2, 1 May 2012. [Google Scholar]
- Snyder, B.; Corbett, B.; O’Brien, P. Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit. J. Lightwave Technol. 2013, 31, 3934–3942. [Google Scholar] [CrossRef]
- O’Carroll, J.; Phelan, R.; Kelly, B.; Byrne, D.; Barry, L.; O’Gorman, J. Wide temperature range 0 < T < 85 °C narrow linewidth discrete mode laser diodes for coherent communications applications. Opt. Express 2011, 19, B90–B95. [Google Scholar] [PubMed]
- Kaur, K.S.; Subramanian, A.Z.; Cardile, P.; Verplancke, R.; Van Kerrebrouck, J.; Spiga, S.; Meyer, R.; Bauwelinck, J.; Baets, R.; Van Steenberge, G. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms. Opt. Express 2015, 23, 28264–28270. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, J.; Yang, W.; Zhu, L.; Qiao, P.; Chang-Hasnain, C.J. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Opt. Express 2015, 23, 2512–2523. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Lee, J.-S.; Zhao, Y.; Scarcella, C.; Cardile, P.; Daly, A.; Ortsiefer, M.; Carroll, L.; O’Brien, P. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit. Opt. Express 2016, 24, 16258–16266. [Google Scholar] [CrossRef] [PubMed]
- Worhoff, K.; Heideman, R.G.; Gilde, M.J.; Blidegn, K.; Heschel, M.; Van den Vlekkert, H. Flip-chip assembly for photonic circuits. In Proceedings of the SPIE 5454, Micro-Optics: Fabrication, Packaging, and Integration, Strasbourg, France, 8 September 2004.
- Zhang, X.R.; Zhu, W.H.; Liew, B.P.; Gaurav, M.; Yeo, A.; Chan, K.C. Copper pillar bump structure optimization for flip chip packaging with Cu/Low-K stack. In Proceedings of the 11th International Conference on Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE), Bordeaux, France, 26–28 April 2010.
- Chen, K.M.; Lin, T.S. Copper pillar bump design optimization for lead free flip-chip packaging. J. Mater. Sci. Mater. Electron. 2010, 21, 278–284. [Google Scholar] [CrossRef]
- Garrou, P.; Bower, C.; Ramm, P. Chapter1: Introduction to 3D Integration in Handbook of 3D Integration Volume 1—Technology and Applications of 3D Integrated Circuits; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Fedeli, J.M.; Di Cioccio, L.; Marris-Morini, D.; Vivien, L.; Orobtchouk, R.; Rojo-Romeo, P.; Seassal, C.; Mandorlo, F. Development of silicon photonics devices using microelec-tronic tools for the integration on top of a CMOS wafer. Adv. Opt. Technol. 2008. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Howlader, M.R.; Nishida, K.; Kimura, T.; Suga, T. Study on Sn-Ag Oxidation and Feasibility of Room Temperature Bonding of Sn-Ag-Cu Solder. Mater. Trans. 2005, 46, 2431–2436. [Google Scholar] [CrossRef]
- Multicore MF210 VOC-free No Clean Flux. Available online: http://www.henkel-adhesives.com (accessed on 15 October 2016).
- Horibe, A.; Lee, K.-W.; Okamoto, K.; Mori, H.; Orii, Y. No Clean Flux Technology for Large Die Flip Chip Packages. In Proceedings of the IEEE Electronic Components & Technology Conference, Las Vegas, NV, USA, 28–31 May 2013.
- Choon-Mei, S.L.; Marbella, C.; Min, T.A. No-clean Polymer Flux Evaluations and its Impact on BGA Solder Joint Quality and Board Level Reliability. In Proceedings of the 34th International Electronic Manufacturing Technology Conference, Melaka, Malaysia, 30 November–2 December 2010.
- Baehr-Jones, T.; Pinguet, T.; Guo-Qiang, P.L.; Danziger, S.; Prather, D.; Hochberg, M. Myths and rumours of silicon photonics. Nat. Photonics 2012, 6, 206–208. [Google Scholar] [CrossRef]
- Kaspar, P.; Brenot, R.; Le liepvre, A.; Accard, A.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Dan, G.-H.; Pavarelli, N.; et al. Packaged hybrid III-V/silicon SOA. In Proceedings of the European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014; pp. 1–3.
- FDMA Access by Using Low-Cost Optical Network Units in Silicon Photonics. Available online: http://www.fabulous-project.eu (accessed on 15 October 2016).
- Lindenmann, N.; Balthasar, G.; Hillerkuss, D.; Schmogrow, R.; Jordan, M.; Leuthold, J.; Freude, W.; Koos, C. Photonic wire bonding: A novel concept for chip-scale interconnections. Opt. Express 2012, 20, 17667–17677. [Google Scholar] [CrossRef] [PubMed]
- Lindenmann, N.; Dottermusch, S.; Goedecke, M.L.; Hoose, T.; Billah, M.R.; Onanuga, T.; Hofmann, A.; Freude, W.; Koos, C. Connecting silicon photonic circuits to multi-core fibers by photonic wire bonding. J. Lightwave Technol. 2015, 33, 755–760. [Google Scholar] [CrossRef]
- Benedikovic, D.; Cheben, P.; Schmid, J.H.; Xu, D.-X.; Lamontagne, B.; Wang, S.; Lapointe, J.; Halir, R.; Ortega-Monux, A.; Janz, S.; et al. Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides. Opt. Express 2015, 23, 22628–22635. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. Integrated metamaterials for efficient and compact free-space-to-waveguide coupling. Opt. Express 2014, 22, 27175–27182. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zheng, X.; Li, G.; Shubin, I.; Luo, Y.; Thacker, H.; Mekis, A.; Pinguet, T.; Sahni, S.; Raj, K.; et al. Grating-coupler-based optical proximity coupling for scalable computing systems. SPIE Proc. 2011. [Google Scholar] [CrossRef]
- Sodagar, M.; Pourabolghasem, R.; Eftekhar, A.A.; Adibi, A. High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities. Opt. Express 2014, 22, 16767–16777. [Google Scholar] [CrossRef] [PubMed]
- Bernabé, S.; Kopp, C.; Volpert, M.; Harduin, J.; Fédéli, J.-M.; Ribot, H. Chip-to-chip optical interconnections between stacked self-aligned SOI photonic chips. Opt. Express 2012, 20, 7886–7894. [Google Scholar] [CrossRef] [PubMed]
- PhoeniX Software—Solutions for Micro and Nano Technologies. Available online: http://www.phoenixbv.com (accessed on 15 October 2016).
- Luceda Photonics—Software and Services for Integrated Photonic Designers. Available online: http://www.lucedaphotonics.com/en (accessed on 15 October 2016).
Coupler Type | Insertion Loss | 1 dB Bandwidth | Polarization Sensitivity | 1 dB Alignment Tolerance | MPW Availability |
---|---|---|---|---|---|
1D-GC 1 | 1.6 dB [28] | 40 nm [13] | TE 1/TM 1 | ±2.5 μm (in-plane) [13] & 10 μm (out-of-plane) [26] | CEA-Leti &Imec |
2D-GC 1 | 3.2 dB [32] | 35 nm [32] | TE & TM | ±2.5 μm (in-plane) [32] | CEA-Leti & Imec |
Edge Coupler | 1.2 dB [17] | 200 nm TE & 150 nm TM [17] | TE & TM | ±0.5 μm (in-plane) [17] | Imec (taper only) |
Evanescent Coupler | 1.0 dB [36] | >>40 nm [36] | TE & TM | ±2.5 μm (in-plane) [36] | Imec (taper only) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carroll, L.; Lee, J.-S.; Scarcella, C.; Gradkowski, K.; Duperron, M.; Lu, H.; Zhao, Y.; Eason, C.; Morrissey, P.; Rensing, M.; et al. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Appl. Sci. 2016, 6, 426. https://doi.org/10.3390/app6120426
Carroll L, Lee J-S, Scarcella C, Gradkowski K, Duperron M, Lu H, Zhao Y, Eason C, Morrissey P, Rensing M, et al. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences. 2016; 6(12):426. https://doi.org/10.3390/app6120426
Chicago/Turabian StyleCarroll, Lee, Jun-Su Lee, Carmelo Scarcella, Kamil Gradkowski, Matthieu Duperron, Huihui Lu, Yan Zhao, Cormac Eason, Padraic Morrissey, Marc Rensing, and et al. 2016. "Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices" Applied Sciences 6, no. 12: 426. https://doi.org/10.3390/app6120426
APA StyleCarroll, L., Lee, J. -S., Scarcella, C., Gradkowski, K., Duperron, M., Lu, H., Zhao, Y., Eason, C., Morrissey, P., Rensing, M., Collins, S., Hwang, H. Y., & O’Brien, P. (2016). Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences, 6(12), 426. https://doi.org/10.3390/app6120426