Wavelength Selection for Detection of Slight Bruises on Pears Based on Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pear Samples
2.2. Hyperspectral Image Acquisition System
2.3. Hyperspectral Image Acquisition and Correction
2.4. Data Processing and Analysis
2.4.1. Principal Component Analysis
2.4.2. ROC Curve Analysis
2.4.3. PLS-DA Modeling
3. Results and Discussion
3.1. Reflectance Spectra of Pears
3.2. The Results of PCA
3.3. Results of ROC Curve Analysis
3.4. PLS-DA Modeling Based on Two Characteristic Wavelengths
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ortiz-Canavate, J.; Garcia-Ramos, F.J. Reduction of mechanical damage to apples in a packing line using mechanical devices. Appl. Eng. Agric. 2003, 19, 703–710. [Google Scholar]
- Zhao, W.; Liu, J.; Chen, Q.; Vittayapadung, S. Detecting subtle bruises on fruits with hyperspectral imaging. Trans. Chin. Soc. Agric. Mach. 2008, 39, 106–109. [Google Scholar]
- Cao, F.; Wu, D.; Zheng, J.T.; Bao, Y.D.; Wang, Z.Y.; He, Y. Detection of pear injury based on visible-near infrared spectroscopy and multispectral image. Spectrosc. Spectr. Anal. 2011, 31, 920–923. [Google Scholar]
- Cho, B.; Kim, M.S.; Lee, H.; Delwiche, S.R. Infrared imaging technology for detection of bruise damages of ‘Shingo’ pear. Proc. SPIE 2011, 8027, 1–7. [Google Scholar]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Anal. Chim. Acta 2012, 714, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.-K.; Kim, M.S.; Baek, I.-S.; Kim, D.-Y.; Lee, W.-H.; Kim, J.; Bae, H.; Kim, Y.-S. Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biol. Technol. 2013, 76, 40–49. [Google Scholar] [CrossRef]
- Gowen, A.A.; Taghizadeh, M.; O’Donnell, C.P. Identification of mushrooms subjected to freeze damage using hyperspectral imaging. J. Food Eng. 2009, 93, 7–12. [Google Scholar] [CrossRef]
- Chelladurai, V.; Karuppiah, K.; Jayas, D.S.; Fields, P.G.; White, N.D.G. Detection of Callosobruchus maculatus (F.) infestation in soybean using soft X-ray and NIR hyperspectral imaging techniques. J. Stored Prod. Res. 2014, 57, 43–48. [Google Scholar] [CrossRef]
- Zhao, J.; Ouyang, Q.; Chen, Q.; Wang, J. Detection of bruise on pear by hyperspectral imaging sensor with different classification algorithms. Sens. Lett. 2010, 8, 570–576. [Google Scholar] [CrossRef]
- Dang, H.Q.; Kim, I.; Cho, B.K.; Kim, M.S. Detection of bruise damage of pear using hyperspectral imagery. In Proceedings of the International Conference on Control, Automation and Systems, Jeju Island, Korea, 17–21 October 2012; pp. 1258–1260.
- Li, J.; Rao, X.; Ying, Y. Detection of common defects on oranges using hyperspectral reflectance imaging. Comput. Electron. Agric. 2011, 78, 38–48. [Google Scholar] [CrossRef]
- Wang, J.; Nakano, K.; Ohashi, S.; Kubota, Y.; Takizawa, K.; Sasaki, Y. Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging. Biosyst. Eng. 2011, 108, 345–351. [Google Scholar] [CrossRef]
- Rivera, N.V.; Gómez-Sanchis, J.; Chanona-Pérez, J.; Carrasco, J.J.; Millán-Giraldo, M.; Lorente, D.; Cubero, S.; Blasco, J. Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst. Eng. 2014, 122, 91–98. [Google Scholar] [CrossRef]
- Luo, X.; Takahashi, T.; Kyo, K.; Zhang, S. Wavelength selection in vis/NIR spectra for detection of bruises on apples by ROC analysis. J. Food Eng. 2012, 109, 457–466. [Google Scholar] [CrossRef]
- Lorente, D.; Aleixos, N.; Gómez-Sanchis, J.; Cubero, S.; Blasco, J. Selection of optimal wavelength features for decay detection in citrus fruit using the roc curve and neural networks. Food Bioprocess Technol. 2013, 6, 530–541. [Google Scholar] [CrossRef]
- Yu, K.; Zhao, Y.; Li, X.; Zhang, S.; He, Y. Study on identification the crack feature of fresh jujube using hyperspectral imaging. Spectrosc. Spectral Anal. 2014, 34, 532–537. [Google Scholar]
- Kamruzzaman, M.; Sun, D.-W.; EIMasry, G.; Allen, P. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 2013, 103, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Jin, X.; Mao, H.; Wu, X.; Zhu, W.; Zhang, X.; Gao, H. Detection of nitrogen content in lettuce leaves based on spectroscopy and texture using hyperspectral imaging technology. Trans. Chin. Soc. Agric. Eng. 2014, 10, 167–173. [Google Scholar]
- Yu, K.; He, Y.; Liu, F. Discriminant analysis of soil type by laser-induced breakdown spectroscopy. Trans. Chin. Soc. Agric. Eng. 2015, 12, 1–7. [Google Scholar]
- Yu, K.; Zhao, Y.; Liu, Z.; Li, X.; Liu, F.; He, Y. Application of visible and near-infrared hyperspectral imaging for detection of defective features in Loquat. Food Bioprocess Technol. 2014, 7, 3077–3087. [Google Scholar] [CrossRef]
- Huang, W.; Chen, L.; Li, J.; Chi, Z. Effective wavelengths determination for detection of slight bruises on apples based on hyperspectral imaging. Trans. Chin. Soc. Agric. Eng. 2013, 1, 272–277. [Google Scholar]
- Zhang, X.; Liu, F.; He, Y.; Gong, X. Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosyst. Eng. 2013, 115, 56–65. [Google Scholar] [CrossRef]
Wavelength/nm | AUC |
---|---|
472 | 0.992 |
544 | 0.864 |
655 | 0.728 |
688 | 0.663 |
967 | 0.980 |
PLS-DA | Type of Pear Sample | Modeling Set | Prediction Set | ||||
---|---|---|---|---|---|---|---|
Sample Number | Misjudgment Number | Accuracy Rate/% | Sample Number | Misjudgment Number | Accuracy Rate/% | ||
Full spectral bands | normal | 45 | 0 | 100 | 15 | 0 | 100 |
bruised | 45 | 0 | 100 | 15 | 0 | 100 | |
Total | 90 | 0 | 100 | 30 | 0 | 100 | |
Characteristic spectral bands | normal | 45 | 0 | 100 | 15 | 0 | 100 |
bruised | 45 | 1 | 97.8 | 15 | 0 | 100 | |
Total | 90 | 1 | 98.9 | 30 | 0 | 100 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhang, C.; He, Y.; Chen, X.; Liu, F.; Liu, Y. Wavelength Selection for Detection of Slight Bruises on Pears Based on Hyperspectral Imaging. Appl. Sci. 2016, 6, 450. https://doi.org/10.3390/app6120450
Jiang H, Zhang C, He Y, Chen X, Liu F, Liu Y. Wavelength Selection for Detection of Slight Bruises on Pears Based on Hyperspectral Imaging. Applied Sciences. 2016; 6(12):450. https://doi.org/10.3390/app6120450
Chicago/Turabian StyleJiang, Hao, Chu Zhang, Yong He, Xinxin Chen, Fei Liu, and Yande Liu. 2016. "Wavelength Selection for Detection of Slight Bruises on Pears Based on Hyperspectral Imaging" Applied Sciences 6, no. 12: 450. https://doi.org/10.3390/app6120450
APA StyleJiang, H., Zhang, C., He, Y., Chen, X., Liu, F., & Liu, Y. (2016). Wavelength Selection for Detection of Slight Bruises on Pears Based on Hyperspectral Imaging. Applied Sciences, 6(12), 450. https://doi.org/10.3390/app6120450