The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Parallel Model
2.2. Series Model
2.3. Work Done by Excitation Force
3. Experimental Method
3.1. Design of Experimental Device
3.2. Setting of Test Parameters
3.3. Orthogonal Experiment and Orthogonal Array
4. Experimental Results and Analysis of a Dual-Chamber Air Spring
4.1. Influence of Various Parameters on Air Spring Stiffness
4.2. Influence of Various Parameters on Air Spring Damping
5. Rapid Calculation Model of Dual-Chamber Air Spring Stiffness and Damping
5.1. Normalization Process of Each Factor
5.2. Determination of Rapid Calculation Model of Stiffness and Damping
5.3. Test of Calculation Model
- For the stiffness model R2 = 0.99154, Ra2 = 0.96378, the goodness of fit is 96.378%, indicating that the model can well simulate and predict the experimental results. This indicates the effectiveness of the cubic polynomial regression equation fit.
- For the damping model, R2 = 0.98970, Ra2 = 0.95470, the goodness of fit is 95.470%, again indicating that the model can well simulate and predict the experimental results. This again supports the effectiveness of the cubic polynomial regression equation fit.
5.4. Prediction of Experimental Results by the Rapid Calculation Model
6. Conclusions
- Based on energy consumption results, the goodness of fit of the parallel model was 89.43%, and the goodness of fit of the series model was 99.88%. The parallel model is more consistent with the real physical model.
- The effects of volume ratio and orifice ratio on dual-chamber vibration absorber stiffness were not monotonic, but the loading amplitude ratio and frequency tended toward monotonic increasing.
- The effects of the volume ratio, orifice ratio, and loading amplitude ratio on the dual-chamber vibration absorber stiffness did not behave in a monotonic manner, but the loading frequency on damping tended toward monotonic increasing.
- A polynomial rapid calculation model for stiffness and damping was constructed. The accuracy of the rapid calculation model results was verified by the experimental results, and the predicted values were in good agreement with the experimental values.
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Case | Volume Ratio | Orifice Ratio | Loading Amplitude Ratio | Loading Frequency | Real Loading Frequency (Hz) | Parallel Model | Series Model | Work Done by Excitation Force | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
K | C | Q | k | c | q | W | ||||||
1 | 0.5 | 0 | 0.01 | −0.7 | 0.497 | 109.192 | 14.772 | 0.0004292 | 128.627 | 97.766 | 0.003081 | 0.0004297 |
2 | 0.5 | 0.1 | 0.03 | 0.5 | 1.649 | 1249.035 | 19.870 | 0.02411 | 1282.923 | 752.237 | 0.02483 | 0.02437 |
3 | 0.5 | 0.2 | 0.05 | 1.7 | 5.474 | 24512.047 | 58.106 | 0.1492 | 24674.823 | 8808.250 | 0.1752 | 0.1516 |
4 | 0.5 | 0.3 | 0.07 | 0.1 | 1.105 | 503.285 | 15.400 | 0.06352 | 525.984 | 356.854 | 0.07156 | 0.06384 |
5 | 0.5 | 0.4 | 0.02 | 1.3 | 3.669 | 7208.513 | 47.043 | 0.04246 | 7371.526 | 2127.292 | 0.04434 | 0.04304 |
6 | 0.5 | 0.5 | 0.04 | −0.3 | 0.741 | 158.223 | 7.249 | 0.005029 | 165.412 | 166.801 | 0.005102 | 0.005048 |
7 | 0.5 | 0.6 | 0.06 | 0.9 | 2.460 | 3121.949 | 36.450 | 0.2058 | 3223.487 | 1157.179 | 0.1996 | 0.1887 |
8 | 0.75 | 0 | 0.07 | 1.3 | 3.669 | 10804.935 | 10.771 | 0.03249 | 10810.636 | 20423.049 | 0.1299 | 0.03209 |
9 | 0.75 | 0.1 | 0.02 | −0.3 | 0.741 | 152.925 | 5.989 | 0.001248 | 158.002 | 186.403 | 0.001331 | 0.001287 |
10 | 0.75 | 0.2 | 0.04 | 0.9 | 2.460 | 3298.782 | 35.056 | 0.08677 | 3387.664 | 1336.123 | 0.08447 | 0.08329 |
11 | 0.75 | 0.3 | 0.06 | −0.7 | 0.497 | 98.908 | 8.265 | 0.008236 | 105.624 | 129.970 | 0.09743 | 0.008478 |
12 | 0.75 | 0.4 | 0.01 | 0.5 | 1.649 | 1277.190 | 20.470 | 0.002832 | 1312.362 | 763.784 | 0.002948 | 0.002881 |
13 | 0.75 | 0.5 | 0.03 | 1.7 | 5.474 | 17619.902 | 102.952 | 0.2962 | 18330.771 | 2654.775 | 0.2812 | 0.2846 |
14 | 0.75 | 0.6 | 0.05 | 0.1 | 1.105 | 519.751 | 15.930 | 0.03474 | 543.270 | 367.970 | 0.03593 | 0.03468 |
15 | 1 | 0 | 0.06 | 0.5 | 1.649 | 1412.352 | 24.368 | 0.09738 | 1457.423 | 787.955 | 0.09871 | 0.09771 |
16 | 1 | 0.1 | 0.01 | 1.7 | 5.474 | 17009.600 | 98.264 | 0.03743 | 17680.432 | 2589.838 | 0.04081 | 0.0374 |
17 | 1 | 0.2 | 0.03 | 0.1 | 1.105 | 561.650 | 16.714 | 0.01086 | 585.609 | 408.524 | 0.01111 | 0.01092 |
18 | 1 | 0.3 | 0.05 | 1.3 | 3.669 | 7642.988 | 36.205 | 0.17 | 7734.053 | 3074.820 | 0.1937 | 0.178 |
19 | 1 | 0.4 | 0.07 | −0.3 | 0.741 | 179.227 | 8.004 | 0.02 | 186.963 | 193.429 | 0.02007 | 0.02 |
20 | 1 | 0.5 | 0.02 | 0.9 | 2.460 | 3121.603 | 28.248 | 0.02371 | 3182.590 | 1474.095 | 0.02413 | 0.02384 |
21 | 1 | 0.6 | 0.04 | −0.7 | 0.497 | 99.429 | 8.566 | 0.004021 | 106.606 | 127.237 | 0.04211 | 0.004046 |
22 | 1.25 | 0 | 0.05 | −0.3 | 0.741 | 175.538 | 7.100 | 0.00899 | 181.754 | 207.608 | 0.009773 | 0.009058 |
23 | 1.25 | 0.1 | 0.07 | 0.9 | 2.460 | 3294.971 | 45.801 | 0.4436 | 3446.867 | 1039.328 | 0.452 | 0.446 |
24 | 1.25 | 0.2 | 0.02 | −0.7 | 0.497 | 93.417 | 19.146 | 0.001581 | 131.580 | 66.013 | 0.004269 | 0.001549 |
25 | 1.25 | 0.3 | 0.04 | 0.5 | 1.649 | 1337.610 | 35.092 | 0.07292 | 1436.307 | 510.685 | 0.07293 | 0.07287 |
26 | 1.25 | 0.4 | 0.06 | 1.7 | 5.474 | 39581.430 | 324.946 | 0.365 | 42733.898 | 4404.865 | 0.3508 | 0.3427 |
27 | 1.25 | 0.5 | 0.01 | 0.1 | 1.105 | 507.804 | 26.241 | 0.002135 | 573.125 | 230.241 | 0.002108 | 0.002117 |
28 | 1.25 | 0.6 | 0.03 | 1.3 | 3.669 | 7085.175 | 47.500 | 0.1258 | 7254.263 | 2037.839 | 0.1285 | 0.1262 |
29 | 1.5 | 0 | 0.04 | 1.7 | 5.474 | 25749.741 | 114.565 | 0.184 | 26352.096 | 5012.048 | 0.1885 | 0.1795 |
30 | 1.5 | 0.1 | 0.06 | 0.1 | 1.105 | 578.651 | 17.741 | 0.05048 | 604.853 | 409.543 | 0.05246 | 0.05053 |
31 | 1.5 | 0.2 | 0.01 | 1.3 | 3.669 | 7492.063 | 34.781 | 0.01139 | 7577.801 | 3074.069 | 0.01196 | 0.0116 |
32 | 1.5 | 0.3 | 0.03 | −0.3 | 0.741 | 191.848 | 8.807 | 0.003483 | 200.600 | 201.881 | 0.003591 | 0.003496 |
33 | 1.5 | 0.4 | 0.05 | 0.9 | 2.460 | 3380.530 | 47.534 | 0.2329 | 3540.001 | 1055.189 | 0.2364 | 0.2345 |
34 | 1.5 | 0.5 | 0.07 | −0.7 | 0.497 | 83.222 | 14.337 | 0.01418 | 107.242 | 64.009 | 0.03212 | 0.01412 |
35 | 1.5 | 0.6 | 0.02 | 0.5 | 1.649 | 1376.694 | 34.954 | 0.01857 | 1471.837 | 540.732 | 0.01881 | 0.01865 |
36 | 1.75 | 0 | 0.03 | 0.9 | 2.460 | 3187.457 | 27.938 | 0.05243 | 3245.880 | 1552.170 | 0.05043 | 0.05119 |
37 | 1.75 | 0.1 | 0.05 | −0.7 | 0.497 | 85.259 | 12.130 | 0.006464 | 102.043 | 73.747 | 0.01677 | 0.006484 |
38 | 1.75 | 0.2 | 0.07 | 0.5 | 1.649 | 1529.732 | 46.205 | 0.2168 | 1679.347 | 518.626 | 0.2152 | 0.2133 |
39 | 1.75 | 0.3 | 0.02 | 1.7 | 5.474 | 18778.734 | 133.334 | 0.2094 | 19897.493 | 2371.391 | 0.2137 | 0.2089 |
40 | 1.75 | 0.4 | 0.04 | 0.1 | 1.105 | 573.199 | 29.053 | 0.03713 | 644.131 | 263.825 | 0.03814 | 0.03742 |
41 | 1.75 | 0.5 | 0.06 | 1.3 | 3.669 | 10461.160 | 45.520 | 0.1921 | 10566.332 | 4573.206 | 0.2358 | 0.2106 |
42 | 1.75 | 0.6 | 0.01 | −0.3 | 0.741 | 174.026 | 10.879 | 0.0004944 | 188.745 | 139.501 | 0.0004885 | 0.0004824 |
43 | 2 | 0 | 0.02 | 0.1 | 1.105 | 564.645 | 14.696 | 0.005067 | 583.071 | 465.062 | 0.005049 | 0.005031 |
44 | 2 | 0.1 | 0.04 | 1.3 | 3.669 | 9798.212 | 48.073 | 0.179 | 9923.452 | 3809.107 | 0.1693 | 0.1718 |
45 | 2 | 0.2 | 0.06 | −0.3 | 0.741 | 198.357 | 16.858 | 0.02693 | 229.366 | 124.692 | 0.02689 | 0.02692 |
46 | 2 | 0.3 | 0.01 | 0.9 | 2.460 | 3509.969 | 47.140 | 0.009806 | 3661.021 | 1142.528 | 0.009924 | 0.009847 |
47 | 2 | 0.4 | 0.03 | −0.7 | 0.497 | 83.851 | 13.458 | 0.002517 | 104.857 | 67.178 | 0.005397 | 0.002638 |
48 | 2 | 0.5 | 0.05 | 0.5 | 1.649 | 1490.134 | 39.147 | 0.1286 | 1600.387 | 568.245 | 0.1297 | 0.129 |
49 | 2 | 0.6 | 0.07 | 1.7 | 5.474 | 65716.150 | 495.144 | 0.2703 | 70124.859 | 7875.753 | 0.368 | 0.3109 |
References
- Taylor, R.E.; Jefferys, E.R. Variability of hydrodynamic load predictions for a tension leg platform. Ocean Eng. 1986, 13, 449–490. [Google Scholar] [CrossRef]
- Zeng, X.H.; Shen, X.P.; Wu, Y.X. Governing equations and numerical solutions of tension leg platform with finite amplitude motion. Appl. Math. Mech. 2007, 28, 37–49. [Google Scholar] [CrossRef]
- Zeng, X.H.; Li, X.W.; Liu, Y.; Wu, Y.X. Nonlinear dynamic responses of tension leg platform with slack-taut tether. China Ocean Eng. 2009, 23, 37–48. [Google Scholar]
- Ahmad, S.K.; Ahmad, S. Active control of non-linearly coupled TLP response under wind and wave environments. Comput. Struct. 1999, 72, 735–747. [Google Scholar] [CrossRef]
- Alves, R.M.; Batista, R.C. Active/Passive Control of Heave Motion for TLP Type Offshore Platform; Chung, J.S., Matsui, T., Koterayama, W., Eds.; International Society of Offshore and Polar Engineers: Cupertino, CA, USA, 1999; pp. 332–338. [Google Scholar]
- Sakai, F.; Takaeda, S.; Tamaki, T. Tuned liquid column damper-new type device for suppression of building vibrations. In Proceedings of the International Conference on Highrise Buildings, Nanjing, China, 25–27 March 1989; pp. 926–931.
- Lee, H.H.; Wong, S.H.; Lee, R.S. Response mitigation on the offshore floating platform system with tuned liquid column damper. Ocean Eng. 2006, 33, 1118–1142. [Google Scholar] [CrossRef]
- Lee, H.H.; Juang, H.H. Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD. Smart Struct. Syst. 2012, 9, 71–104. [Google Scholar] [CrossRef]
- Taflanidis, A.A.; Angelides, D.C.; Scruggs, J.T. Simulation-based robust design of mass dampers for response mitigation of tension leg platforms. Eng. Struct. 2009, 31, 847–857. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, H.R.; Min, K.W. Experimental verification on nonlinear dynamic characteristic of a tuned liquid column damper subjected to various excitation amplitudes. Struct. Des. Tall Spec. Build. 2012, 21, 374–388. [Google Scholar] [CrossRef]
- Chatterjee, T.; Chakraborty, S. Vibration mitigation of structures subjected to random wave forces by liquid column dampers. Ocean Eng. 2014, 87, 151–161. [Google Scholar] [CrossRef]
- Zeng, X.; Yu, Y.; Zhang, L.; Liu, Q.; Wu, H. A New Energy-Absorbing Device for Motion Suppression in Deep-Sea Floating Platforms. Energies 2014, 8, 111–132. [Google Scholar] [CrossRef]
- Rijken, O.; Spillane, M.; Leverette, S.J. Vibration Absorber Technology and Conceptual Design of Vibration Absorber for TLP in Ultradeep Water. In Proceedings of the ASME 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6–11 June 2010; ASME: New York, NY, USA, 2010; pp. 629–638. [Google Scholar]
- Bian, X.S.; Leverette, S.J.; Rijken, O.R. A TLP solution for 8000 Ft water depth. In Proceedings of the ASME 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6–11 June 2010; ASME: New York, NY, USA, 2010; pp. 255–262. [Google Scholar]
- Spillane, M.W.; Rijken, O.R.; Leverette, S.J. Vibration absorbers for deepwater TLP′s. In Proceedings of the 17th International Offshore and Polar Engineering Conference, Lisbon, Portugal, 1–6 July 2007.
- Bachrach, B.I.; Rivin, E. Analysis of a damped pneumatic spring. J. Sound Vib. 1983, 86, 191–197. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, K.J. Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations. J. Sound Vib. 2007, 301, 909–926. [Google Scholar] [CrossRef]
- Jing, X.; Lang, Z. Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion: A Parametric Characteristic Approach; Springer: Berlin, Germany; 2015. [Google Scholar]
- Xiao, Z.; Jing, X. An SIMO Nonlinear System Approach to Analysis and Design of Vehicle Suspensions, IEEE/ASME trans. Mechatronics 2015, 20, 3098–3111. [Google Scholar] [CrossRef]
- Jing, X. Nonlinear characteristic output spectrum for nonlinear analysis and design. IEEE/ASME Trans. Mechatron. 2014, 19, 171–183. [Google Scholar] [CrossRef]
- Shin, Y.H.; Kim, K.J. Performance enhancement of pneumatic vibration isolation tables in low frequency range by time delay control. J. Sound Vib. 2009, 321, 537–553. [Google Scholar] [CrossRef]
- Moon, J.H.; Lee, B.G. Modeling and sensitivity analysis of a pneumatic vibration isolation system with two air chambers. Mech. Mach. Theory 2010, 45, 1828–1850. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Chen, X. Generic vibration criteria-based dual-chamber pneumatic spring vibration isolation table design. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2014, 228, 1621–1629. [Google Scholar] [CrossRef]
- Liu, H.; Lee, J.C. Model development and experimental research on an air spring with auxiliary reservoir. Int. J. Automot. Technol. 2011, 12, 839–847. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, J.; Zhang, Y. Research on theoretical calculation model for dynamic stiffness of air spring with auxiliary chamber. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008.
- Pu, H.; Luo, X.; Chen, X. Modeling and analysis of dual-chamber pneumatic spring with adjustable damping for precision vibration isolation. J. Sound Vib. 2011, 330, 3578–3590. [Google Scholar] [CrossRef]
- Erin, C.; Wilson, B.; Zapfe, J. An improved model of a pneumatic vibration isolator: Theory and experiment. J. Sound Vib. 1998, 218, 81–101. [Google Scholar] [CrossRef]
- Heertjes, M.; van de Wouw, N. Nonlinear dynamics and control of a pneumatic vibration isolator. J. Vib. Acoust. 2006, 128, 439–448. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, K.J. A method of transmissibility design for dual-chamber pneumatic vibration isolator. J. Sound Vib. 2009, 323, 67–92. [Google Scholar] [CrossRef]
- Toyofuku, K.; Yamada, C.; Kagawa, T.; Fujita, T. Study on dynamic characteristic analysis of air spring with auxiliary chamber. JSAE Rev. 1999, 20, 349–355. [Google Scholar] [CrossRef]
- Rao, C.R. Factorial experiments derivable from combinatorial arrangements of arrays. Suppl. J. R. Stat. Soc. 1947, 9, 128–139. [Google Scholar] [CrossRef]
- Taguchi, G. Performance analysis design. Int. J. Prod. Res. 1978, 16, 521–530. [Google Scholar] [CrossRef]
- Azouzi, R.; Guillot, M. On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion. Int. J. Mach. Tools Manuf. 1997, 37, 1201–1217. [Google Scholar] [CrossRef]
- Green, P.E.; Krieger, A.M.; Wind, Y. Thirty years of conjoint analysis: Reflections and prospects. Interfaces 2001, 31, S56–S73. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.; Neter, J. Applied Linear Regression Models; McGraw-Hill/Irwin: New York, NY, USA, 2004. [Google Scholar]
Level | Volume Ratio | Orifice Ratio | Loading Amplitude Ratio | Loading Frequency lnω | Real Loading Frequency (Hz) | |
---|---|---|---|---|---|---|
Factor | ||||||
1 | 0.5 | 0.0 | 0.01 | −0.7 | 0.497 | |
2 | 0.75 | 0.1 | 0.02 | −0.3 | 0.741 | |
3 | 1.0 | 0.2 | 0.03 | 0.1 | 1.105 | |
4 | 1.25 | 0.3 | 0.04 | 0.5 | 1.649 | |
5 | 1.5 | 0.4 | 0.05 | 0.9 | 2.460 | |
6 | 1.75 | 0.5 | 0.06 | 1.3 | 3.669 | |
7 | 2.0 | 0.6 | 0.07 | 1.7 | 5.474 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Zhang, L.; Yu, Y.; Shi, M.; Zhou, J. The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures. Appl. Sci. 2016, 6, 74. https://doi.org/10.3390/app6030074
Zeng X, Zhang L, Yu Y, Shi M, Zhou J. The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures. Applied Sciences. 2016; 6(3):74. https://doi.org/10.3390/app6030074
Chicago/Turabian StyleZeng, Xiaohui, Liang Zhang, Yang Yu, Min Shi, and Jifu Zhou. 2016. "The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures" Applied Sciences 6, no. 3: 74. https://doi.org/10.3390/app6030074
APA StyleZeng, X., Zhang, L., Yu, Y., Shi, M., & Zhou, J. (2016). The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures. Applied Sciences, 6(3), 74. https://doi.org/10.3390/app6030074