Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. CQD Synthesis
2.3. Solar Cell Fabrication
3. Results and Discussion
3.1. CQD Properties
3.2. Solar Cell Characterization
3.3. Device Performance
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nozik, A.J. Quantum dot solar cells. Phys. E Low-Dimens. Syst. Nanostruct. 2002, 14, 115–120. [Google Scholar] [CrossRef]
- McDonald, S.A.; Konstantatos, G.; Zhang, S.; Cyr, P.W.; Klem, E.J.D.; Levina, L.; Sargent, E.H. Solution-processed pbs quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, J.; Church, C.P.; Miller, E.M.; Luther, J.M.; Klimov, V.I.; Beard, M.C. Pbse quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 2014, 14, 6010–6015. [Google Scholar] [CrossRef] [PubMed]
- Semonin, O.E.; Luther, J.M.; Choi, S.; Chen, H.-Y.; Gao, J.; Nozik, A.J.; Beard, M.C. Peak external photocurrent quantum efficiency exceeding 100% via meg in a quantum dot solar cell. Science 2011, 334, 1530–1533. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Voznyy, O.; Sabatini, R.; Garcia de Arquer, F.P.; Munir, R.; Balawi, A.H.; Lan, X.; Fan, F.; Walters, G.; Kirmani, A.R.; et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Kramer, I.J.; Minor, J.C.; Moreno-Bautista, G.; Rollny, L.; Kanjanaboos, P.; Kopilovic, D.; Thon, S.M.; Carey, G.H.; Chou, K.W.; Zhitomirsky, D.; et al. Efficient spray-coated colloidal quantum dot solar cells. Adv. Mater. 2015, 27, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Kramer, I.J.; Moreno-Bautista, G.; Minor, J.C.; Kopilovic, D.; Sargent, E.H. Colloidal quantum dot solar cells on curved and flexible substrates. Appl. Phys. Lett. 2014, 105, 163902. [Google Scholar] [CrossRef]
- Kemp, K.W.; Labelle, A.J.; Thon, S.M.; Ip, A.H.; Kramer, I.J.; Hoogland, S.; Sargent, E.H. Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Adv. Energy Mater. 2013, 3, 917–922. [Google Scholar] [CrossRef]
- Zhitomirsky, D.; Kramer, I.J.; Labelle, A.J.; Fischer, A.; Debnath, R.; Pan, J.; Bakr, O.M.; Sargent, E.H. Colloidal quantum dot photovoltaics: The effect of polydispersity. Nano Lett. 2012, 12, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.-K.; Brown, P.R.; Bawendi, M.G.; Bulović, V. P-i-n heterojunction solar cells with a colloidal quantum-dot absorber layer. Adv. Mater. 2014, 26, 4845–4850. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.R.; Lunt, R.R.; Zhao, N.; Osedach, T.P.; Wanger, D.D.; Chang, L.-Y.; Bawendi, M.G.; Bulović, V. Improved current extraction from zno/pbs quantum dot heterojunction photovoltaics using a moo3 interfacial layer. Nano Lett. 2011, 11, 2955–2961. [Google Scholar] [CrossRef] [PubMed]
- Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P.V. Quantum dot solar cells. Harvesting light energy with cdse nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385–2393. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Radich, J.G.; Kamat, P.V. Sequentially layered cdse/cds nanowire architecture for improved nanowire solar cell performance. J. Phys. Chem. C 2014, 118, 206–213. [Google Scholar] [CrossRef]
- Rühle, S.; Shalom, M.; Zaban, A. Quantum-dot-sensitized solar cells. ChemPhysChem 2010, 11, 2290–2304. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Mora-Seró, I.; Shen, Q.; Zhang, H.; Li, Y.; Zhao, K.; Wang, J.; Zhong, X.; Bisquert, J. High-efficiency “green” quantum dot solar cells. J. Am. Chem. Soc. 2014, 136, 9203–9210. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mora-Seró, I.; Pan, Z.; Zhao, K.; Zhang, H.; Feng, Y.; Yang, G.; Zhong, X.; Bisquert, J. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 2013, 135, 15913–15922. [Google Scholar] [CrossRef] [PubMed]
- Dayal, S.; Kopidakis, N.; Olson, D.C.; Ginley, D.S.; Rumbles, G. Photovoltaic devices with a low band gap polymer and cdse nanostructures exceeding 3% efficiency. Nano Lett. 2010, 10, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Feng, Y.; Wen, X.; Zhang, P.; Woo, S.; Shrestha, S.; Conibeer, G.; Huang, S. Theoretical and experimental investigation of the electronic structure and quantum confinement of wet-chemistry synthesized Ag2S nanocrystals. J. Phys. Chem. C 2015, 119, 867–872. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, C.; Chen, X.; Wang, Q. Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton bohr radius. J. Phys. Chem. C 2014, 118, 4918–4923. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Johansson, E.M.J. Efficient charge-carrier extraction from Ag2S quantum dots prepared by the silar method for utilization of multiple exciton generation. Nanoscale 2015, 7, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Mir, W.J.; Swarnkar, A.; Sharma, R.; Katti, A.; Adarsh, K.N.V.D.; Nag, A. Origin of unusual excitonic absorption and emission from colloidal Ag2S nanocrystals: Ultrafast photophysics and solar cell. J. Phys. Chem. Lett. 2015. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Ding, J.; Zhang, S.; Li, Y.; Bai, L.; Yuan, N. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells. Nanoscale Res. Lett. 2013, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, J.; Zhang, J.; Vlachopoulos, N.; Johansson, E.M.J. Zno@Ag2S core-shell nanowire arrays for environmentally friendly solid-state quantum dot-sensitized solar cells with panchromatic light capture and enhanced electron collection. Phys. Chem. Chem. Phys. 2015, 17, 12786–12795. [Google Scholar] [CrossRef] [PubMed]
- Tubtimtae, A.; Wu, K.-L.; Tung, H.-Y.; Lee, M.-W.; Wang, G.J. Ag2S quantum dot-sensitized solar cells. Electrochem. Commun. 2010, 12, 1158–1160. [Google Scholar] [CrossRef]
- Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse cde (e = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Hines, M.A.; Scholes, G.D. Colloidal pbs nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849. [Google Scholar] [CrossRef]
- Zhuang, Z.; Lu, X.; Peng, Q.; Li, Y. A facile “dispersion–decomposition” route to metal sulfide nanocrystals. Chem. A Eur. J. 2011, 17, 10445–10452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Justo, Y.; Maes, J.; Walravens, W.; Zhang, J.; Liu, J.; Hens, Z.; Johansson, E.M.J. Slow recombination in quantum dot solid solar cell using p-i-n architecture with organic p-type hole transport material. J. Mater. Chem. A 2015, 3, 20579–20585. [Google Scholar] [CrossRef]
- Alfred, J.; Frueh, J. The crystallography of silver sulfide, Ag2S. Z. Krist. Cryst. Mater. 1958, 110, 136–144. [Google Scholar] [CrossRef]
- Bi, D.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E.M.J. Effect of different hole transport materials on recombination in ch3nh3pbi3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 2013, 4, 1532–1536. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zheng, T.; Wu, Q.; Schneider, A.M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115, 12666–12731. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Hong, X.; Zhang, F.; Liu, X. Recent advancements in perovskite solar cells: Flexibility, stability and large scale. J. Mater. Chem. A 2016, 4, 6755–6771. [Google Scholar] [CrossRef]
- Sveinbjornsson, K.; Aitola, K.; Zhang, J.; Johansson, M.B.; Zhang, X.; Correa-Baena, J.-P.; Hagfeldt, A.; Boschloo, G.; Johansson, E.M.J. Ambient air-processed mixed-ion perovskites for high-efficiency solar cells. J. Mater. Chem. A 2016, 4, 16536–16545. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Liu, J.; Johansson, E.M.J. Solution processed flexible and bending durable heterojunction colloidal quantum dot solar cell. Nanoscale 2015, 7, 11520–11524. [Google Scholar] [CrossRef] [PubMed]
- Etxebarria, I.; Ajuria, J.; Pacios, R. Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%. Org. Electron. 2015, 19, 34–60. [Google Scholar] [CrossRef]
- Yan, J.; Saunders, B.R. Third-generation solar cells: A review and comparison of polymer:Fullerene, hybrid polymer and perovskite solar cells. RSC Adv. 2014, 4, 43286–43314. [Google Scholar] [CrossRef]
- Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161. [Google Scholar] [CrossRef]
- Ameri, T.; Min, J.; Li, N.; Machui, F.; Baran, D.; Forster, M.; Schottler, K.J.; Dolfen, D.; Scherf, U.; Brabec, C.J. Performance enhancement of the p3ht/pcbm solar cells through nir sensitization using a small-bandgap polymer. Adv. Energy Mater. 2012, 2, 1198–1202. [Google Scholar] [CrossRef]
- Noh, J.H.; Jeon, N.J.; Choi, Y.C.; Nazeeruddin, M.K.; Gratzel, M.; Seok, S.I. Nanostructured TiO2/CH3NH3PBI3 heterojunction solar cells employing spiro-OMeTAD/co-complex as hole-transporting material. J. Mater. Chem. A 2013, 1, 11842–11847. [Google Scholar] [CrossRef]
- Wang, E.; Hou, L.; Wang, Z.; Hellström, S.; Zhang, F.; Inganäs, O.; Andersson, M.R. An easily synthesized blue polymer for high-performance polymer solar cells. Adv. Mater. 2010, 22, 5240–5244. [Google Scholar] [CrossRef] [PubMed]
HTM | VOC (V) | JSC (mAcm−2) | FF | Eff. (%) |
---|---|---|---|---|
Spiro-OMeTAD | 0.47 | −1.9 | 0.28 | 0.25 |
P3HT | 0.37 | −2.5 | 0.38 | 0.34 |
- | 0.45 | −1.1 | 0.52 | 0.27 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öberg, V.A.; Zhang, X.; Johansson, M.B.; Johansson, E.M.J. Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption. Appl. Sci. 2017, 7, 1020. https://doi.org/10.3390/app7101020
Öberg VA, Zhang X, Johansson MB, Johansson EMJ. Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption. Applied Sciences. 2017; 7(10):1020. https://doi.org/10.3390/app7101020
Chicago/Turabian StyleÖberg, Viktor A., Xiaoliang Zhang, Malin B. Johansson, and Erik M. J. Johansson. 2017. "Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption" Applied Sciences 7, no. 10: 1020. https://doi.org/10.3390/app7101020
APA StyleÖberg, V. A., Zhang, X., Johansson, M. B., & Johansson, E. M. J. (2017). Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption. Applied Sciences, 7(10), 1020. https://doi.org/10.3390/app7101020