Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review
Abstract
:1. Introduction
2. Hyperspectral Imaging Configurations
2.1. Image Acquisition Modes
2.2. Instrumentation
2.3. Commen Sensing Modes
3. Spectral Scattering Imaging
3.1. Spectral Scattering Imaging (SSI) Configurations
3.2. Analysis of Scattering Images
3.2.1. Extraction of Scattering Profiles
3.2.2. Correction of Scattering Profiles
3.2.3. Feature Extraction
3.2.4. Multivariate Calibration
3.3. Quality Evaluation for Horticultural Products
3.3.1. Apple
3.3.2. Other Horticultural and Food Products
4. Integrated Reflectance and Transmittance Imaging
4.1. Instrumentation
4.2. Image Acquistion and Pre-Processing
4.3. Quality Evaluation for Pickling Cucumbers and Pickles
5. Spatially-Resolved Spectroscopic Technique for Optical Property Measurement
5.1. Principle and Mathematical Theory
5.2. Algorithms and Instrumentation
5.2.1. Inverse Algorithms and Instrumental Design Parameters
5.2.2. Instrument Development
5.3. Quality Evaluation of Horticultural Products
6. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shewfelt, R.L. Measuring quality and maturity. In Postharvest Handling: A Systems Approach, 3rd ed.; Florkowski, W.J., Shewfelt, R.L., Brueckner, B., Prussia, S.E., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 387–410. [Google Scholar]
- Walsh, K.B. Postharvest regulation and quality standards on fresh produce. In Postharvest Handling: A Systems Approach, 3rd ed.; Florkowski, W.J., Shewfelt, R.L., Brueckner, B., Prussia, S.E., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 167–215. [Google Scholar]
- Chen, Y.R.; Chao, K.L.; Kim, M.S. Machine vision technology for agricultural applications. Comput. Electron. Agric. 2002, 36, 173–191. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of nir spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Lu, R. Light Scattering Technology for Food Property, Quality and Safety Assessment; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Tao, Y.; Heinemann, P.H.; Varghese, Z.; Morrow, C.T.; Sommer, H.J. Machine vision for color inspection of potatoes and apples. Trans. ASAE 1995, 38, 1555–1561. [Google Scholar] [CrossRef]
- Tao, Y.; Morrow, C.T.; Heinemann, P.H.; Sommer, H.J. Fourier-based separation technique for shape grading of potatoes using machine vision. Trans. ASAE 1995, 38, 949–957. [Google Scholar] [CrossRef]
- Leemans, V.; Magein, H.; Destain, M.F. Defects segmentation on ‘golden delicious’ apples by using colour machine vision. Comput. Electron. Agric. 1998, 20, 117–130. [Google Scholar] [CrossRef]
- Blasco, J.; Aleixos, N.; Molto, E. Machine vision system for automatic quality grading of fruit. Biosyst. Eng. 2003, 85, 415–423. [Google Scholar] [CrossRef]
- Lu, R.F.; Chen, Y.R. Hyperspectral imaging for safety inspection of food and agricultural products. In Pathogen Detection and Remediation for Safe Eating; Chen, Y.R., Ed.; Society of Photo Optical: Bellingham, WA, USA, 1999; Volume 3544, pp. 121–133. [Google Scholar]
- Martinsen, P.; Schaare, P. Measuring soluble solids distribution in kiwifruit using near-infrared imaging spectroscopy. Postharvest Biol. Technol. 1998, 14, 271–281. [Google Scholar] [CrossRef]
- Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Sun, D.W. Hyperspectral Imaging for Food Quality Analysis and Control; Academic Press: London, UK, 2010. [Google Scholar]
- Lorente, D.; Aleixos, N.; Gomez-Sanchis, J.; Cubero, S.; Garcia-Navarrete, O.L.; Blasco, J. Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 2012, 5, 1121–1142. [Google Scholar] [CrossRef]
- Park, B.; Lu, R. Hyperspectral Imaging Technology in Food and Agriculture; Springer: New York, NY, USA, 2015. [Google Scholar]
- Mehl, P.M.; Chen, Y.R.; Kim, M.S.; Chan, D.E. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. J. Food Eng. 2004, 61, 67–81. [Google Scholar] [CrossRef]
- Xing, J.; Bravo, C.; Jancsok, P.T.; Ramon, H.; De Baerdemaeker, J. Detecting bruises on ‘golden delicious’ apples using hyperspectral imaging with multiple wavebands. Biosyst. Eng. 2005, 90, 27–36. [Google Scholar] [CrossRef]
- ElMasry, G.; Wang, N.; Vigneault, C.; Qiao, J.; ElSayed, A. Early detection of apple bruises on different background colors using hyperspectral imaging. LWT-Food Sci. Technol. 2008, 41, 337–345. [Google Scholar] [CrossRef]
- Yang, C.; Kim, M.S.; Kang, S.; Tao, T.; Chao, K.; Lefcourt, A.M.; Chan, D.E. The development of a simple multispectral algorithm for detection of fecal contamination on apples using a hyperspectral line-scan imaging system. Sens. Instrum. Food Qual. Saf. 2011, 5, 10–18. [Google Scholar] [CrossRef]
- Li, J.B.; Chen, L.P.; Huang, W.Q.; Wang, Q.Y.; Zhang, B.H.; Tian, X.; Fan, S.X.; Li, B. Multispectral detection of skin defects of bi-colored peaches based on vis-nir hyperspectral imaging. Postharvest Biol. Technol. 2016, 112, 121–133. [Google Scholar] [CrossRef]
- Chao, K.L.; Yang, C.C.; Kim, M.S. Spectral line-scan imaging system for high-speed non-destructive wholesomeness inspection of broilers. Trends Food Sci. Technol. 2010, 21, 129–137. [Google Scholar] [CrossRef]
- Chao, K.; Yang, C.C.; Chen, Y.R.; Kim, M.S.; Chan, D.E. Hyperspectral-multispectral line-scan imaging system for automated poultry carcass inspection applications for food safety. Poult. Sci. 2007, 86, 2450–2460. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Yoon, S.C.; Windham, W.R.; Lawrence, K.C.; Kim, M.S.; Chao, K. Line-scan hyperspectral imaging for real-time in-line poultry fecal detection. Sens. Instrum. Food Qual. Saf. 2011, 5, 25–32. [Google Scholar] [CrossRef]
- Lu, R.F. Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biol. Technol. 2004, 31, 147–157. [Google Scholar] [CrossRef]
- Peng, Y.K.; Lu, R.F. Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. J. Food Eng. 2007, 82, 142–152. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R. Detection of internal defect in pickling cucumbers using hyperspectral transmittance imaging. Trans. ASABE 2008, 51, 705–713. [Google Scholar] [CrossRef]
- Qin, J.; Lu, R. Detection of pits in tart cherries by hyperspectral transmission imaging. Trans. ASAE 2005, 48, 1963–1970. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R. Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging: Part II. Performance of a prototype. Sens. Instrum. Food Qual. Saf. 2008, 2, 152–160. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R. Detection of internal defect in pickling cucumbers using laser scattering imaging analysis. In Proceedings of the XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR), Québec City, QC, Canada, 13–17 June 2010.
- Qin, J.W.; Lu, R.F. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biol. Technol. 2008, 49, 355–365. [Google Scholar] [CrossRef]
- Cen, H.Y.; Lu, R.F.; Mendoza, F.A. Analysis of absorption and scattering spectra for assessing the internal quality of apple fruit. In IV International Conference Postharvest Unlimited 2011; Toivonen, P.M.A., Mattheis, J.P., Rudell, D.R., Eds.; International Society for Horticultural Science: Leuven, Belgium, 2012; Volume 945, pp. 181–188. [Google Scholar]
- Lu, R. Detection of bruises on apples using near-infrared hyperspectral imaging. Trans. ASABE 2003, 46, 523–530. [Google Scholar]
- Leiva-Valenzuela, G.A.; Lu, R.; Aguilera, J.M. Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. J. Food Eng. 2013, 115, 91–98. [Google Scholar] [CrossRef]
- Leiva-Valenzuela, G.A.; Lu, R.; Aguilera, J.M. Assessment of internal quality of blueberries using hyperspectral transmittance and reflectance images with whole spectra or selected wavelengths. Innov. Food Sci. Emerg. Technol. 2014, 24, 2–13. [Google Scholar] [CrossRef]
- Pan, L.; Sun, Y.; Xiao, H.; Gu, X.; Hu, P.; Wei, Y.; Tu, K. Hyperspectral imaging with different illumination patterns for the hollowness classification of white radish. Postharvest Biol. Technol. 2017, 126, 40–49. [Google Scholar] [CrossRef]
- Hu, M.-H.; Dong, Q.-L.; Liu, B.-L.; Opara, U.L. Prediction of mechanical properties of blueberry using hyperspectral interactance imaging. Postharvest Biol. Technol. 2016, 115, 122–131. [Google Scholar] [CrossRef]
- Wang, H.; LI, C.; Wang, M. Quantitative determination of onion internal quality using reflectance, interactance, and transmittance modes of hyperspectral imaging. Trans. ASABE 2013, 56, 1623–1635. [Google Scholar]
- Birth, G.S.; Davis, C.E.; Townsend, W.E. The scatter coefficient as a measure of pork quality. J. Anim. Sci. 1978, 46, 639–645. [Google Scholar] [CrossRef]
- Birth, G.S. The light scattering properties of foods. J. Food Sci. 1978, 43, 916–925. [Google Scholar] [CrossRef]
- Tu, K.; DeBusscher, R.; DeBaerdemaeker, J.; Schrevens, E. Using laser beam as light source to study tomato and apple quality non-destructively. In Proceedings of the Food Processing Automation IV Conference, Chicago, IL, USA, 3–5 November 1995; pp. 528–536.
- McGlone, V.A.; Abe, H.; Kawano, S. Kiwifruit firmness by near infrared light scattering. J. Near Infrared Spectrosc. 1997, 5, 83–89. [Google Scholar] [CrossRef]
- Cho, Y.J.; Han, Y.J. Nondestructive characterization of apple firmness by quantitation of laser scatter. J. Text. Stud. 1999, 30, 625–638. [Google Scholar] [CrossRef]
- Lu, R.F.; Peng, Y.K. Hyperspectral scattering for assessing peach fruit firmness. Biosyst. Eng. 2006, 93, 161–171. [Google Scholar] [CrossRef]
- Romano, G.; Baranyai, L.; Gottschalk, K.; Zude, M. An approach for monitoring the moisture content changes of drying banana slices with laser light backscattering imaging. Food Bioprocess Technol. 2008, 1, 410–414. [Google Scholar] [CrossRef]
- Qing, Z.S.; Ji, B.P.; Zude, M. Non-destructive analyses of apple quality parameters by means of laser-induced light backscattering imaging. Postharvest Biol. Technol. 2008, 48, 215–222. [Google Scholar] [CrossRef]
- Lorente, D.; Zude, M.; Regen, C.; Palou, L.; Gomez-Sanchis, J.; Blasco, J. Early decay detection in citrus fruit using laser-light backscattering imaging. Postharvest Biol. Technol. 2013, 86, 424–430. [Google Scholar] [CrossRef]
- Sun, J.; Kunnemeyer, R.; McGlone, A.; Rowe, P. Multispectral scattering imaging and nir interactance for apple firmness predictions. Postharvest Biol. Technol. 2016, 119, 58–68. [Google Scholar] [CrossRef]
- Lu, R. Nondestructive measurement of firmness and soluble solids content for apple fruit using hyperspectral scattering images. Sens. Instrum. Food Qual. Saf. 2007, 1, 19–27. [Google Scholar] [CrossRef]
- Lu, R.; Peng, Y. Development of a multispectral imaging prototype for real-time detection of apple fruit firmness. Opt. Eng. 2007, 46. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, R. Modeling multispectral scattering properties for prediction of apple fruit firmness. Trans. ASAE 2005, 48, 235–242. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, R. An lctf-based multispectral imaging system for estimation of apple fruit firmness: Part II. Selection of optimal wavelengths and development of prediction models. Trans. ASABE 2006, 49, 269–275. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, R. An lctf-based multispectral imaging system for estimation of apple fruit firmness: Part I. Acquisition and characterization of scattering images. Trans. ASABE 2006, 49, 259–267. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, R. Improving apple fruit firmness predictions by effective correction of multispectral scattering images. Postharvest Biol. Technol. 2006, 41, 266–274. [Google Scholar] [CrossRef]
- Peng, Y.K.; Lu, R.F. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 2008, 48, 52–62. [Google Scholar] [CrossRef]
- Qin, J.W.; Lu, R.F. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Appl. Spectrosc. 2007, 61, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Kienle, A.; Lilge, L.; Patterson, M.S.; Hibst, R.; Steiner, R.; Wilson, B.C. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Appl. Opt. 1996, 35, 2304–2314. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Lu, R.; Peng, Y. Prediction of apple internal quality using spectral absorption and scattering properties. Trans. ASABE 2009, 52, 499–507. [Google Scholar] [CrossRef]
- Qing, Z.S.; Ji, B.P.; Zude, M. Predicting soluble solid content and firmness in apple fruit by means of laser light backscattering image analysis. J. Food Eng. 2007, 82, 58–67. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, M.; Lu, R.; Mendoza, F. Analysis of hyperspectral scattering images using a moment method for apple firmness prediction. Trans. ASABE 2014, 57, 75–83. [Google Scholar]
- Huang, M.; Lu, R. Optical wavelength selection for hyperspectral scattering prediction of apple firmness and soluble solids content. Trans. ASABE 2010, 53, 1175–1182. [Google Scholar] [CrossRef]
- Wang, S.; Huang, M.; Zhu, Q.B. Model fusion for prediction of apple firmness using hyperspectral scattering image. Comput. Electron. Agric. 2012, 80, 1–7. [Google Scholar] [CrossRef]
- Zhu, Q.B.; Huang, M.; Zhao, X.; Wang, S. Wavelength selection of hyperspectral scattering image using new semi-supervised affinity propagation for prediction of firmness and soluble solid content in apples. Food Anal. Methods 2013, 6, 334–342. [Google Scholar] [CrossRef]
- Rady, A.; Guyer, D.; Lu, R. Evaluation of sugar content of potatoes using hyperspectral imaging. Food Bioprocess Technol. 2015, 8, 995–1010. [Google Scholar] [CrossRef]
- Pan, L.Q.; Lu, R.F.; Zhu, Q.B.; Tu, K.; Cen, H.Y. Predict compositions and mechanical properties of sugar beet using hyperspectral scattering. Food Bioprocess Technol. 2016, 9, 1177–1186. [Google Scholar] [CrossRef]
- Mendoza, F.; Lu, R.F.; Ariana, D.; Cen, H.Y.; Bailey, B. Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 2011, 62, 149–160. [Google Scholar] [CrossRef]
- Mendoza, F.; Lu, R.F.; Cen, H.Y. Grading of apples based on firmness and soluble solids content using vis/swnir spectroscopy and spectral scattering techniques. J. Food Eng. 2014, 125, 59–68. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M.; Eriksson, L. Pls-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Naes, T.I.; Isaksson, T.; Fearn, T.; Davies, T. A User Friendly Guide to Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2002. [Google Scholar]
- Gemperline, P. Practical Guide to Chemometrics, 2nd ed.; Talylor & Francis Group: Boca Raton, UF, USA, 2006. [Google Scholar]
- Mendoza, F.; Lu, R.F.; Cen, H.Y. Comparison and fusion of four nondestructive sensors for predicting apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 2012, 73, 89–98. [Google Scholar] [CrossRef]
- Romano, G.; Argyropoulos, D.; Muller, J. Laser light backscattering to monitor moisture content, soluable solid conten, and hardness of apple tissue during drying. J. Food Eng. 2011, 104, 657–662. [Google Scholar] [CrossRef]
- Romano, G.; Argyropoulos, D.; Nagle, M.; Khan, M.T.; Muller, J. Combination of digital images and laser light to predict moisture content and color of bell pepper simultaneously during drying. J. Food Eng. 2012, 109, 438–448. [Google Scholar] [CrossRef]
- Baranyai, L.; Zude, M. Analysis of laser light migration in apple tissue by monte carlo simulation. Prog. Agric. Eng. Sci. 2008, 4, 45–59. [Google Scholar] [CrossRef]
- Baranyai, L.; Zude, M. Analysis of laser light propagation in kiwifruit using backscattering imaging and monte carlo simulation. Comput. Electron. Agric. 2009, 69, 33–39. [Google Scholar] [CrossRef]
- Hashim, N.; Pfanz, M.; Regen, C.; Janius, R.B.; Rahman, R.A.; Osman, A.; Shitan, M.; Zude, M. An approach for monitoring the chilling injury appearance in bananas by means of backscattering imaging. J. Food Eng. 2013, 116, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Lorente, D.; Zude, M.; Idler, C.; Gomez-Sanchis, J.; Blasco, J. Laser-light backscattering imaging for early decay detection in citrus fruit using both a statistical and a physical model. J. Food Eng. 2015, 154, 76–85. [Google Scholar] [CrossRef]
- Cen, H.; He, Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 2007, 18, 72–83. [Google Scholar] [CrossRef]
- Miller, A.R.; Kelley, T.J.; White, B.D. Nondestructive evaluation of pickling cucumbers using visible-infrared light transmission. J. Am. Soc. Hortic. Sci. 1995, 120, 1063–1068. [Google Scholar]
- Clark, C.J.; McGlone, V.A.; Jordan, R.B. Detection of brownheart in ‘braeburn’ apple by transmission nir spectroscopy. Postharvest Biol. Technol. 2003, 28, 87–96. [Google Scholar] [CrossRef]
- McGlone, V.A.; Martinsen, P.J.; Clark, C.J.; Jordan, R.B. On-line detection of brownheart in braeburn apples using near infrared transmission measurements. Postharvest Biol. Technol. 2005, 37, 142–151. [Google Scholar] [CrossRef]
- Fu, X.P.; Ying, Y.B.; Lu, H.S.; Xu, H.R. Comparison of diffuse reflectance and transmission mode of visible-near infrared spectroscopy for detecting brown heart of pear. J. Food Eng. 2007, 83, 317–323. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R. Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging: Part I. Development of a prototype. Sens. Instrum. Food Qual. Saf. 2008, 2, 144–151. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R.F. Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. J. Food Eng. 2010, 96, 583–590. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R.F. Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Comput. Electron. Agric. 2010, 74, 137–144. [Google Scholar] [CrossRef]
- Xing, J.; Guyer, D.; Ariana, D.P.; Lu, R. Determining optimal wavebands using genetic algorithm for detection of internal insect infestation in tart cherry. Sens. Instrum. Food Qual. Saf. 2008, 2, 161–167. [Google Scholar] [CrossRef]
- Lu, R.F.; Ariana, D.P. Detection of fruit fly infestation in pickling cucumbers using a hyperspectral reflectance/transmittance imaging system. Postharvest Biol. Technol. 2013, 81, 44–50. [Google Scholar] [CrossRef]
- Cen, H.Y.; Lu, R.F.; Ariana, D.P.; Mendoza, F. Hyperspectral imaging-based classification and wavebands selection for internal defect detection of pickling cucumbers. Food Bioprocess Technol. 2014, 7, 1689–1700. [Google Scholar] [CrossRef]
- Cen, H.Y.; Lu, R.F.; Zhu, Q.B.; Mendoza, F. Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification. Postharvest Biol. Technol. 2016, 111, 352–361. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Crop Values 2015 Summary (February 2016); United States Department of Agriculture: Washington, DC, USA, 2016.
- Schultheis, J.R.; Averre, C.W.; Boyette, M.D.; Estes, E.A.; Holmes, G.J.; Monks, D.W.; Sorensen, K.A. Commercial Production of Pickling and Slicing Cucumbers in North Carolina; N.C. Cooperative Extension Service: Raleigh, NC, USA, 2000. [Google Scholar]
- Lu, R.; Ariana, D.P.; Cen, H. Optical absorption and scattering properties of normal and defective pickling cucumbers for 700–1000 nm. Sens. Instrum. Food Qual. Saf. 2011, 5, 51–56. [Google Scholar] [CrossRef]
- Lu, R.; Cen, H. Measurement of food optical properties. In Hyperspectral Imaging Technology in Food and Agriculture; Park, B., Lu, R., Eds.; Springer: New York, NY, USA, 2015; pp. 203–226. [Google Scholar]
- Cubeddu, R.; D’Andrea, C.; Pifferi, A.; Taroni, P.; Torricelli, A.; Valentini, G.; Ruiz-Altisent, M.; Valero, C.; Ortiz, C.; Dover, C.; et al. Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples. Appl. Spectrosc. 2001, 55, 1368–1374. [Google Scholar] [CrossRef] [Green Version]
- Cubeddu, R.; D’Andrea, C.; Pifferi, A.; Taroni, P.; Torricelli, A.; Valentini, G.; Dover, C.; Johnson, D.; Ruiz-Altisent, M.; Valero, C. Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm. Appl. Opt. 2001, 40, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.S.; Moulton, J.D.; Wilson, B.C.; Berndt, K.W.; Lakowicz, J.R. Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue. Appl. Opt. 1991, 30, 4474–4476. [Google Scholar] [CrossRef] [PubMed]
- Chance, B.; Cope, M.; Gratton, E.; Ramanujam, N.; Tromberg, B.J. Phase measurement of light absorption and scattering in human tissue. Rev. Sci. Instrum. 1998, 69, 3457–3481. [Google Scholar] [CrossRef]
- Farrell, T.J.; Patterson, M.S.; Wilson, B. A diffusion-theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties invivo. Med. Phys. 1992, 19, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.R.; Cuccia, D.J.; Durkin, A.J. Detection of bruises on golden delicious apples using spatial-frequency-domain imaging—Art. No. 64301O. In Advanced Biomedical and Clinical Diagnostic Systems V; VoDinh, T., Grundfest, W.S., Benaron, D.A., Cohn, G.E., Raghavachari, R., Eds.; The International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6430. [Google Scholar]
- Cuccia, D.J.; Bevilacqua, F.; Durkin, A.J.; Ayers, F.R.; Tromberg, B.J. Quantitation and mapping of tissue optical properties using modulated imaging. J. Biomed. Opt. 2009, 14, 024012. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.J.; Berg, E.P.; Lee, J.W.; Yao, G. Characterizing beef muscles with optical scattering and absorption coefficients in vis-nir region. Meat Sci. 2007, 75, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Rizzolo, A.; Vanoli, M.; Spinelli, L.; Torricelli, A. Sensory characteristics, quality and optical properties measured by time-resolved reflectance spectroscopy in stored apples. Postharvest Biol. Technol. 2010, 58, 1–12. [Google Scholar] [CrossRef]
- Qin, J.W.; Lu, R.F. Hyperspectral diffuse reflectance imaging for rapid, noncontact measurement of the optical properties of turbid materials. Appl. Opt. 2006, 45, 8366–8373. [Google Scholar] [CrossRef] [PubMed]
- Cen, H.Y.; Lu, R.F. Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique. Appl. Opt. 2009, 48, 5612–5623. [Google Scholar] [CrossRef] [PubMed]
- Cen, H.Y.; Lu, R.F. Optimization of the hyperspectral imaging-based spatially-resolved system for measuring the optical properties of biological materials. Opt. Express 2010, 18, 17412–17432. [Google Scholar] [CrossRef] [PubMed]
- Case, K.M.; Zweifel, P.F. Linear Transport Theory; Addison-Welsley Pub. Co.: Boston, MA, USA, 1967. [Google Scholar]
- Haskell, R.C.; Svaasand, L.O.; Tsay, T.T.; Feng, T.C.; McAdams, M.S. Boundary-conditions for the diffusion equation in radiative transfer. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1994, 11, 2727–2741. [Google Scholar] [CrossRef] [PubMed]
- Groenhuis, R.A.J.; Ferwerda, H.A.; Tenbosch, J.J. Scattering and absorption of turbid materials determined from reflection measurements. 1. Theory. Appl. Opt. 1983, 22, 2456–2462. [Google Scholar] [CrossRef] [PubMed]
- Kienle, A.; Patterson, M.S. Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1997, 14, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Cen, H.; Lu, R.; Mendoza, F.A.; Ariana, D.P. Assessing multiple quality attributes of peaches using optical absorption and scattering properties. Trans. ASABE 2012, 55, 647–657. [Google Scholar] [CrossRef]
- Mourant, J.R.; Fuselier, T.; Boyer, J.; Johnson, T.M.; Bigio, I.J. Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl. Opt. 1997, 36, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Dam, J.S.; Pedersen, C.B.; Dalgaard, T.; Fabricius, P.E.; Aruna, P.; Andersson-Engels, S. Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths. Appl. Opt. 2001, 40, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Trong, N.N.D.; Erkinbaev, C.; Tsuta, M.; Baerdemaeker, J.D.; Nicolai, B.; Saeys, W. Spatially resolved diffuse reflectance in the visible and near-infrared wavelength range for non-destructive quality assessment of “braeburn” apples. Postharvest Biol. Technol. 2014, 91, 39–48. [Google Scholar] [CrossRef]
- Pham, T.H.; Eker, C.; Durkin, A.; Tromberg, B.J.; Andersson-Engels, S. Quantifying the optical properties and chromophore concentrations of turbid media by chemometric analysis of hyperspectral diffuse reflectance data collected using a fourier interferometric imaging system. Appl. Spectrosc. 2001, 55, 1035–1045. [Google Scholar] [CrossRef]
- Sauer, T. Numerical Analysis, 2nd ed.; Pearson Education, Inc.: Boston, MA, USA, 2012. [Google Scholar]
- Doornbos, R.M.P.; Lang, R.; Aalders, M.C.; Cross, F.W.; Sterenborg, H. The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys. Med. Biol. 1999, 44, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Keener, J.D.; Chalut, K.J.; Pyhtila, J.W.; Wax, A. Application of mie theory to determine the structure of spheroidal scatterers in biological materials. Opt. Lett. 2007, 32, 1326–1328. [Google Scholar] [CrossRef] [PubMed]
- Michels, R.; Foschum, F.; Kienle, A. Optical properties of fat emulsions. Opt. Express 2008, 16, 5907–5925. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Cen, H.; Huang, M.; Ariana, D.P. Spectral absorption and scattering properties of normal and bruised apple tissue. Trans. ASABE 2010, 53, 263–269. [Google Scholar] [CrossRef]
- Zhu, Q.B.; He, C.L.; Lu, R.F.; Mendoza, F.; Cen, H.Y. Ripeness evaluation of ‘sun bright’ tomato using optical absorption and scattering properties. Postharvest Biol. Technol. 2015, 103, 27–34. [Google Scholar] [CrossRef]
- Cen, H.Y.; Lu, R.F.; Mendoza, F.; Beaudry, R.M. Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue. Postharvest Biol. Technol. 2013, 85, 30–38. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Huang, Y.; Lu, R. Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review. Appl. Sci. 2017, 7, 189. https://doi.org/10.3390/app7020189
Lu Y, Huang Y, Lu R. Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review. Applied Sciences. 2017; 7(2):189. https://doi.org/10.3390/app7020189
Chicago/Turabian StyleLu, Yuzhen, Yuping Huang, and Renfu Lu. 2017. "Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review" Applied Sciences 7, no. 2: 189. https://doi.org/10.3390/app7020189
APA StyleLu, Y., Huang, Y., & Lu, R. (2017). Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review. Applied Sciences, 7(2), 189. https://doi.org/10.3390/app7020189