Design and Cooling Performances of an Air Conditioning System with Two Parallel Refrigeration Cycles for a Special Purpose Vehicle
Abstract
:1. Introduction
2. Experimental Setup and Configuration
2.1. System Configuration
2.1.1. Set-Up
2.1.2. Test Conditions
2.2. Data Reduction
2.3. Thermal Load Calculation for Air Conditioning System Design
2.4. Air Flow Rate of the Evaporator Fan
3. Results and Discussion
3.1. Design of the Air conditioning (A/C) with Two Parallel Refrigeration Cycles
3.2. Cooling Performances (Cooling Capacity and COP) of the Designed A/C
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
A/C | Air conditioning |
COP | Coefficient of performance |
C | Specific heat (kJ/kg·K) |
h | Enthalpy, (kJ/kg) |
Mass flow rate (kg/s) | |
Heat transfer rate or cooling capacity, (W) | |
rpm | Revolution per minute (rev/min) |
T | Temperature, (°C) |
Volume flow rate, (m3/s) | |
W | Work, (kJ/kg) |
Density (kg/m3) |
Subscripts
air | air |
Comp. | compressor |
Evap. | evaporator |
In. | inlet |
Out. | outlet |
Ref. | refrigerant |
References
- Lee, M.Y.; Lee, D.Y. Review on Conventional Air Conditioning, Alternative Refrigerants and CO2 Heat Pumps for Vehicles. Adv. Mech. Eng. 2013, 5, 713924. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, M.-Y. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles. Adv. Mech. Eng. 2013, 5, 282313. [Google Scholar] [CrossRef]
- Lee, D.W.; Jeong, H.H.; An, J.C.; Baek, C.H.; Kim, J.H.; Jeong, C.S.; Wang, Y.H. Experimental Study of Impact on the Thermal Comfort for Three-dimensional Air-Conditioning System. In Proceedings of the KSAE 2013 Annual Conference, Jeju, Korea, 1–4 May 2013; pp. 706–711.
- Yoon, S.H.; Park, J.Y.; Son, D.Y.; Choi, Y.H.; Park, K.S. A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC. Trans. Korean Soc. Mech. Eng. A 2014, 38, 979–988. [Google Scholar] [CrossRef]
- Seo, J.W.; Park, J.H.; Choi, Y.H. Evaluation of Thermal Comfort and Cooldown performance inside Automotive Cabin according to Air-conditioning Vent Location. Trans. Korean Soc. Autom. Eng. 2012, 20, 120–129. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.K.; Kim, S.B.; Ha, O.N. An Experimental Study on Performance Characteristics of Refrigeration System Using R134a Refrigerating System. In Proceedings of the KSME 2007 Annual Spring Conference, Busan, Korea, 30 May–1 June 2007; pp. 1529–1534.
- Jang, J.K.; Chang, Y.S.; Kang, B.H. Performance Analysis of Evaporator with Improved Distribution in Plate Heat Exchanger using R134A. In Proceedings of the KSME Thermal Engineering 2012 Annual Spring Conference, Gangwon-do, Korea, 23–26 May 2012; pp. 9–10.
- Sin, Y.C.; Kim, S.H.; Cho, H.H. Analysis of Cooling Performance in a R404A and R134a Refrigerator Truck. In Proceedings of the KSAE 2012 Annual Conference, Goyang, Korea, 21–24 November 2012; pp. 1037–1042.
- Tamura, T.; Yakumaru, Y.; Nishiwaki, F. Experimental study on automotive cooling and heating air conditioning system using CO2 as a refrigerant. Int. J. Refrig. 2005, 28, 1302–1307. [Google Scholar] [CrossRef]
- Tuo, H.; Hrnjak, P. Flash gas bypass in mobile air conditioning system with R134a. Int. J. Refrig. 2012, 35, 1869–1877. [Google Scholar] [CrossRef]
- Qi, Z.; Zhao, Y.; Chen, J. Performance enhancement study of mobile air conditioning system using microchannel heat exchangers. Int. J. Refrig. 2010, 33, 301–312. [Google Scholar] [CrossRef]
- Lee, Y.; Jung, D. A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications. Appl. Therm. Eng. 2012, 35, 240–242. [Google Scholar] [CrossRef]
- Zindove, T.; Niekerk, T.V.; Wilm, T.; Mercorelli, P. Development of a temperature controlled weathering test box to evaluate the life cycle behaviour of interior automotive components. IFAC-PapersOnLine 2015, 48, 117–120. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 4th ed.; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Moffat, R.J. Uncertainty analysis in the planning of an experiment. J. Fluids Eng. 1985, 107, 173–178. [Google Scholar] [CrossRef]
- Methods of Testing for Seasonal Efficiency of Unitary Air-Conditioners and Heat Pumps; ASHRAE Standard 116; American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 1983.
- Kim, S.C.; Won, J.P.; Kim, M.S. Effects of operating parameters on the performance of a CO2 air conditioning system for vehicles. Appl. Therm. Eng. 2009, 29, 2408–2416. [Google Scholar] [CrossRef]
- Choi, E.S.; Park, I.G. Effects of charged mass of refrigerant on the performance of a home air-conditioner. In Proceedings of the SAREK 1998 Winter Annual Conference, Gangwon-do, Korea, 11–14 November 1998; pp. 204–208.
- Seo, J.H.; Bang, Y.M.; Lee, M.Y. Investigation on the performance of special purpose automotive air conditioning system using dual refrigeration cycle. Trans. Korean Soc. Mech. Eng. B. 2016, 40, 213–220. [Google Scholar] [CrossRef]
- Howell, R.H.; Coad, W.J.; Sauer, H.J. Principles of Heating Ventilating and Air Conditioning, 6th ed.; ASHRAE: Atlanta, GA, USA, 2009. [Google Scholar]
- Lee, M.Y.; Lee, D.Y.; Kim, Y.C. Performance characteristics of a small capacity directly cooled refrigerator using R290/R600a. Int. J. Refrig. 2008, 31, 734–741. [Google Scholar] [CrossRef]
Components | Specifications | |
---|---|---|
Compressor | Displacement rate (cm3/rev) Type Size (L, W, H, mm) | 160.0 Reciprocating 1100.0 × 920.0 × 220.0 |
Evaporator | Fin type Size (L, W, H, mm) Fan type Fin type | Aluminum plate 850.0 × 160.0 × 163.0 Multi-blade Aluminum groove |
Condenser | Size (L, W, H, mm) Fan type | 820.0 × 52.0 × 270.0 Axial and propeller |
Receiver tank | Size (D, H, mm) | 120.0 × 320.0 |
Accumulator | Size (D, H, mm) | 120.0 × 180.0 |
Expansion device | Type | Thermostatic expansion valve (TEV) |
Refrigerant | Type | R-134a |
Components | Conditions |
---|---|
Outdoor air temperature (°C) | 40.0 |
Indoor air temperature (°C) | 25.0 |
Indoor target temperature (°C) | 15.0, 25.0 |
Refrigerant charge amount (g) | 1200, 1400, 1600 |
Compressor speed (rpm) | 2700 |
Regions | Temperature (°C) |
---|---|
Vietnam | 34.3 |
Thailand | 38.4 |
Myanmar | 38.4 |
India | 41.9 |
Saudi Arabia | 43.2 |
Yemen | 43.1 |
Average temperature | 40.0 |
Components | Conditions |
---|---|
Thermocouples (T-type) | ±0.1 °C |
Pressure gage (Sensors, PI3H) | ±0.1%, Max 25 MPa |
Mass flow rate (Coriolis type) | ±0.2%, Max 650 kg/h |
Data logger (E. Gate IP (V3), 2.93 W @ 12.06 V) | ±0.5% |
COP | 4.7% |
Cooling capacity | 3.5% |
Components | Conditions |
---|---|
Inner volume (m3) | 17.1 |
Constant of the wall | Metal, polyurethane, wood |
Maximum number of passengers | 12 |
Amount of body heat (W) | 750 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moo-Yeon. Design and Cooling Performances of an Air Conditioning System with Two Parallel Refrigeration Cycles for a Special Purpose Vehicle. Appl. Sci. 2017, 7, 190. https://doi.org/10.3390/app7020190
Moo-Yeon. Design and Cooling Performances of an Air Conditioning System with Two Parallel Refrigeration Cycles for a Special Purpose Vehicle. Applied Sciences. 2017; 7(2):190. https://doi.org/10.3390/app7020190
Chicago/Turabian StyleMoo-Yeon. 2017. "Design and Cooling Performances of an Air Conditioning System with Two Parallel Refrigeration Cycles for a Special Purpose Vehicle" Applied Sciences 7, no. 2: 190. https://doi.org/10.3390/app7020190
APA StyleMoo-Yeon. (2017). Design and Cooling Performances of an Air Conditioning System with Two Parallel Refrigeration Cycles for a Special Purpose Vehicle. Applied Sciences, 7(2), 190. https://doi.org/10.3390/app7020190