Optical Parametric Amplification Techniques for the Generation of High-Energy Few-Optical-Cycles IR Pulses for Strong Field Applications
Abstract
:1. Introduction
2. Overview on the Optical Parametric Amplification Process
3. High-Energy Few-Optical Cycle Parametric Sources in the IR Spectral Region
3.1. Available Sources Based on the OPA Design
3.1.1. Millijoule-Level IR Parametric Sources
3.1.2. Sub-Two-Cycle IR Sources Based on Narrowband Parametric Amplification System
3.1.3. High-Energy Tunable IR Parametric Source
3.2. Optical Parametric Chirped Pulse Amplification
3.2.1. Few-Cycle OPCPA Sources in the Near-IR
3.2.2. Few-Cycle OPCPA Sources in the Mid-IR
3.3. Perspectives in OPAs and OPCPAs Development
4. Applications
4.1. High-Order Harmonic Generation Spectroscopy
4.2. Attosecond Pulse Generation
4.3. Photoelectron Spectroscopy
4.4. Other Fields of Application
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 56, 219–221. [Google Scholar] [CrossRef]
- Brabec, T.; Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 2000, 72, 545. [Google Scholar] [CrossRef]
- Manzoni, C.; Cerullo, G. Design criteria for ultrafast optical parametric amplifiers. J. Opt. 2016, 18, 103501. [Google Scholar] [CrossRef]
- Giordmaine, J.; Miller, R.C. Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies. Phys. Rev. Lett. 1965, 14, 973. [Google Scholar] [CrossRef]
- Baumgartner, R.; Byer, R. Optical parametric amplification. IEEE J. Quant. Electron. 1979, 15, 432–444. [Google Scholar] [CrossRef]
- Danielius, R.; Banfi, G.; Di Trapani, P.; Righini, R.; Piskarskas, A.; Stabinis, A. Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses. JOSA B 1993, 10, 2222–2232. [Google Scholar] [CrossRef]
- Cerullo, G.; De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 2003, 74, 1–18. [Google Scholar] [CrossRef]
- Brida, D.; Manzoni, C.; Cirmi, G.; Marangoni, M.; Bonora, S.; Villoresi, P.; De Silvestri, S.; Cerullo, G. Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers. J. Opt. 2009, 12, 013001. [Google Scholar] [CrossRef]
- Tajima, T.; Mourou, G. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. Spec. Top. Accel. Beams 2002, 5, 031301. [Google Scholar] [CrossRef]
- Vozzi, C.; Negro, M.; Stagira, S. Strong-field phenomena driven by mid-infrared ultrafast sources: JMO Series: Attosecond and Strong Field Science. J. Mod. Opt. 2012, 59, 1283–1302. [Google Scholar] [CrossRef]
- Backus, S.; Durfee, C.G., III; Murnane, M.M.; Kapteyn, H.C. High power ultrafast lasers. Rev. Sci. Instrum. 1998, 69, 1207–1223. [Google Scholar] [CrossRef]
- Dubietis, A.; Butkus, R.; Piskarskas, A.P. Trends in chirped pulse optical parametric amplification. IEEE J. Sel. Top. Quant. Electron. 2006, 12, 163. [Google Scholar] [CrossRef]
- Harris, S.; Oshman, M.; Byer, R. Observation of tunable optical parametric fluorescence. Phys. Rev. Lett. 1967, 18, 732. [Google Scholar] [CrossRef]
- Banfi, G.; Danielius, R.; Di Trapani, P.; Foggi, P.; Righini, R.; Piskarskas, A. Femtosecond traveling-wave parametric generation with lithium triborate. Opt. Lett. 1993, 18, 1633–1635. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, C.; Cirmi, G.; Brida, D.; De Silvestri, S.; Cerullo, G. Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties. Phys. Rev. A 2009, 79, 033818. [Google Scholar] [CrossRef]
- Alfano, R.; Shapiro, S. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 1970, 24, 592. [Google Scholar] [CrossRef]
- Bellini, M.; Hänsch, T.W. Phase-locked white-light continuum pulses: Toward a universal optical frequency-comb synthesizer. Opt. Lett. 2000, 25, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Baum, P.; Lochbrunner, S.; Piel, J.; Riedle, E. Phase-coherent generation of tunable visible femtosecond pulses. Opt. Lett. 2003, 28, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Baum, P.; Riedle, E.; Greve, M.; Telle, H.R. Phase-locked ultrashort pulse trains at separate and independently tunable wavelengths. Opt. Lett. 2005, 30, 2028–2030. [Google Scholar] [CrossRef] [PubMed]
- Baltuška, A.; Fuji, T.; Kobayashi, T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 2002, 88, 133901. [Google Scholar] [CrossRef] [PubMed]
- Fuji, T.; Rauschenberger, J.; Apolonski, A.; Yakovlev, V.S.; Tempea, G.; Udem, T.; Gohle, C.; Hänsch, T.W.; Lehnert, W.; Scherer, M.; et al. Monolithic carrier-envelope phase-stabilization scheme. Opt. Lett. 2005, 30, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Vozzi, C.; Cirmi, G.; Manzoni, C.; Benedetti, E.; Calegari, F.; Sansone, G.; Stagira, S.; Svelto, O.; Silvestri, S.D.; Nisoli, M.; et al. High-energy, few-optical-cycle pulses at 1.5 μm with passive carrier-envelope phase stabilization. Opt. Express 2006, 14, 10109–10116. [Google Scholar] [CrossRef] [PubMed]
- Koechner, W. Solid-State Laser Engineering; Springer: New York, NY, USA, 2013; Volume 1. [Google Scholar]
- Pires, H.; Baudisch, M.; Sanchez, D.; Hemmer, M.; Biegert, J. Ultrashort pulse generation in the mid-IR. Progr. Quant. Electron. 2015, 43, 1–30. [Google Scholar] [CrossRef]
- Mason, P.D.; Michaille, L.F. Review of the development of nonlinear materials for mid-IR generation. In Proceedings of the SPIE Europe Security and Defence, Cardiff, UK, 15 September 2008; p. 71150N.
- Jiang, X.M.; Guo, S.P.; Zeng, H.Y.; Zhang, M.J.; Guo, G.C. Large crystal growth and new crystal exploration of mid-infrared second-order nonlinear optical materials. In Structure-Property Relationships in Non-Linear Optical Crystals II; Springer: New York, NY, USA, 2012; pp. 1–43. [Google Scholar]
- Vozzi, C.; Calegari, F.; Benedetti, E.; Gasilov, S.; Sansone, G.; Cerullo, G.; Nisoli, M.; Silvestri, S.D.; Stagira, S. Millijoule-level phase-stabilized few-optical-cycle infrared parametric source. Opt. Lett. 2007, 32, 2957–2959. [Google Scholar] [CrossRef] [PubMed]
- Vozzi, C.; Manzoni, C.; Calegari, F.; Benedetti, E.; Sansone, G.; Cerullo, G.; Nisoli, M.; Silvestri, S.D.; Stagira, S. Characterization of a high-energy self-phase-stabilized near-infrared parametric source. J. Opt. Soc. Am. B 2008, 25, B112–B117. [Google Scholar] [CrossRef]
- Hauri, C.; Kornelis, W.; Helbing, F.; Heinrich, A.; Couairon, A.; Mysyrowicz, A.; Biegert, J.; Keller, U. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B 2004, 79, 673–677. [Google Scholar] [CrossRef]
- Shirakawa, A.; Sakane, I.; Kobayashi, T. Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared. Opt. Lett. 1998, 23, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- Hauri, C.P.; Lopez-Martens, R.B.; Blaga, C.I.; Schultz, K.D.; Cryan, J.; Chirla, R.; Colosimo, P.; Doumy, G.; March, A.M.; Roedig, C.; et al. Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament. Opt. Lett. 2007, 32, 868–870. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.E.; Shiner, A.D.; Lassonde, P.; Kieffer, J.C.; Corkum, P.B.; Villeneuve, D.M.; Légaré, F. CEP stable 1.6 cycle laser pulses at 1.8 μm. Opt. Express 2011, 19, 6858–6864. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.E.; Béjot, P.; Giguère, M.; Shiner, A.D.; Trallero-Herrero, C.; Bisson, E.; Kasparian, J.; Wolf, J.P.; Villeneuve, D.M.; Kieffer, J.C.; et al. Compression of 1.8 μm laser pulses to sub two optical cycles with bulk material. Appl. Phys. Lett. 2010, 96, 121109. [Google Scholar] [CrossRef]
- Wang, H.; Chini, M.; Moon, E.; Mashiko, H.; Li, C.; Chang, Z. Coupling between energy and phase in hollow-core fiber based f-to-2f interferometers. Opt. Express 2009, 17, 12082–12089. [Google Scholar] [CrossRef] [PubMed]
- Dubietis, A.; Jonušauskas, G.; Piskarskas, A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 1992, 88, 437–440. [Google Scholar] [CrossRef]
- Piskarskas, A.; Stabinis, A.; Yankauskas, A. Phase phenomena in parametric amplifiers and generators of ultrashort light pulses. Sov. Phys. Uspekhi 1986, 29, 869. [Google Scholar] [CrossRef]
- Mücke, O.D.; Ališauskas, S.; Verhoef, A.J.; Pugžlys, A.; Baltuška, A.; Smilgevičius, V.; Pocius, J.; Giniūnas, L.; Danielius, R.; Forget, N. Self-compression of millijoule 1.5 μm pulses. Opt. Lett. 2009, 34, 2498–2500. [Google Scholar] [CrossRef] [PubMed]
- Mücke, O.D.; Sidorov, D.; Dombi, P.; Pugžlys, A.; Baltuška, A.; Ališauskas, S.; Smilgevičius, V.; Pocius, J.; Giniūnas, L.; Danielius, R.; et al. Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 μm. Opt. Lett. 2009, 34, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Ishii, N.; Kaneshima, K.; Kanai, T.; Watanabe, S.; Itatani, J. Generation of ultrashort intense optical pulses at 1.6 μm from a bismuth triborate-based optical parametric chirped pulse amplifier with carrier-envelope phase stabilization. J. Opt. 2015, 17, 094001. [Google Scholar] [CrossRef]
- Fuji, T.; Ishii, N.; Teisset, C.Y.; Gu, X.; Metzger, T.; Baltuska, A.; Forget, N.; Kaplan, D.; Galvanauskas, A.; Krausz, F. Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 μm. Opt. Lett. 2006, 31, 1103–1105. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Marcus, G.; Deng, Y.; Metzger, T.; Teisset, C.; Ishii, N.; Fuji, T.; Baltuska, A.; Butkus, R.; Pervak, V.; et al. Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 2.1- μm carrier wavelength. Opt. Express 2009, 17, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Chalus, O.; Bates, P.K.; Smolarski, M.; Biegert, J. Mid-IR short-pulse OPCPA with micro-Joule energy at 100 kHz. Opt. Express 2009, 17, 3587–3594. [Google Scholar] [CrossRef] [PubMed]
- Erny, C.; Heese, C.; Haag, M.; Gallmann, L.; Keller, U. High-repetition-rate optical parametric chirped-pulse amplifier producing 1-μJ, sub-100-fs pulses in the mid-infrared. Opt. Express 2009, 17, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Andriukaitis, G.; Balčiūnas, T.; Ališauskas, S.; Pugžlys, A.; Baltuška, A.; Popmintchev, T.; Chen, M.C.; Murnane, M.M.; Kapteyn, H.C. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt. Lett. 2011, 36, 2755–2757. [Google Scholar] [CrossRef] [PubMed]
- Sorokina, I.T.; Dvoyrin, V.V.; Tolstik, N.; Sorokin, E. Mid-IR ultrashort pulsed fiber-based lasers. IEEE J. Sel. Top. Quant. Electron. 2014, 20, 99–110. [Google Scholar] [CrossRef]
- Rudd, J.; Law, R.; Luk, T.; Cameron, S. High-power optical parametric chirped-pulse amplifier system with a 1.55 μm signal and a 1.064 μm pump. Opt. Lett. 2005, 30, 1974–1976. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, D.; Cowan, M.L.; Hua, R.; Franjic, K.; Miller, R.D. High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification. JOSA B 2007, 24, 813–818. [Google Scholar] [CrossRef]
- Chalus, O.; Thai, A.; Bates, P.; Biegert, J. Six-cycle mid-infrared source with 3.8 μJ at 100 kHz. Opt. Lett. 2010, 35, 3204–3206. [Google Scholar] [CrossRef] [PubMed]
- Thai, A.; Hemmer, M.; Bates, P.; Chalus, O.; Biegert, J. Sub-250-mrad, passively carrier–envelope-phase-stable mid-infrared OPCPA source at high repetition rate. Opt. Lett. 2011, 36, 3918–3920. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.W.; Cirmi, G.; Moses, J.; Hong, K.H.; Bhardwaj, S.; Birge, J.R.; Chen, L.J.; Li, E.; Eggleton, B.J.; Cerullo, G.; et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat. Photonics 2011, 5, 475–479. [Google Scholar] [CrossRef]
- Krauss, G.; Lohss, S.; Hanke, T.; Sell, A.; Eggert, S.; Huber, R.; Leitenstorfer, A. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photonics 2010, 4, 33–36. [Google Scholar] [CrossRef]
- Schmidt, B.E.; Thiré, N.; Boivin, M.; Laramée, A.; Poitras, F.; Lebrun, G.; Ozaki, T.; Ibrahim, H.; Légaré, F. Frequency domain optical parametric amplification. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Wolter, B.; Pullen, M.G.; Baudisch, M.; Sclafani, M.; Hemmer, M.; Senftleben, A.; Schröter, C.D.; Ullrich, J.; Moshammer, R.; Biegert, J. Strong-field physics with mid-IR fields. Phys. Rev. X 2015, 5, 021034. [Google Scholar] [CrossRef]
- Corkum, P.B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 1993, 71, 1994–1997. [Google Scholar] [CrossRef] [PubMed]
- Schafer, K.J.; Krause, J.L.; Kulander, K.C. Short-Pulse High-Intensity Lasers and Applications. In Proceedings of the 4th Society of Photo-Optical Instrumentation Engineers (SPIE) international symposium, Los Angeles, CA, USA, 20–25 January 1991; SPIE Society of Photo-Optical Instrumentation Engineers: Bellingham, WA, USA; Volume 1860, pp. 190–197.
- Tate, J.; Auguste, T.; Muller, H.G.; Salières, P.; Agostini, P.; DiMauro, L.F. Scaling of Wave-Packet Dynamics in an Intense Midinfrared Field. Phys. Rev. Lett. 2007, 98, 013901. [Google Scholar] [CrossRef] [PubMed]
- Shiner, A.D.; Trallero-Herrero, C.; Kajumba, N.; Bandulet, H.C.; Comtois, D.; Légaré, F.; Giguère, M.; Kieffer, J.C.; Corkum, P.B.; Villeneuve, D.M. Wavelength Scaling of High Harmonic Generation Efficiency. Phys. Rev. Lett. 2009, 103, 073902. [Google Scholar] [CrossRef] [PubMed]
- Balcou, P.; Salières, P.; L’Huillier, A.; Lewenstein, M. Generalized phase-matching conditions for high harmonics: The role of field-gradient forces. Phys. Rev. A 1997, 55, 3204–3210. [Google Scholar] [CrossRef]
- Yakovlev, V.S.; Ivanov, M.; Krausz, F. Enhanced phase-matching for generation of soft X-ray harmonics and attosecond pulses in atomic gases. Opt. Express 2007, 15, 15351–15364. [Google Scholar] [CrossRef] [PubMed]
- Vozzi, C.; Negro, M.; Calegari, F.; Stagira, S.; Kovács, K.; Tosa, V. Phase-matching effects in the generation of high-energy photons by mid-infrared few-cycle laser pulses. New J. Phys. 2011, 13, 073003. [Google Scholar] [CrossRef]
- Chen, M.C.; Arpin, P.; Popmintchev, T.; Gerrity, M.; Zhang, B.; Seaberg, M.; Popmintchev, D.; Murnane, M.; Kapteyn, H. Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source. Phys. Rev. Lett. 2010, 105, 173901. [Google Scholar] [CrossRef] [PubMed]
- Popmintchev, T.; Chen, M.C.; Popmintchev, D.; Arpin, P.; Brown, S.; Ališauskas, S.; Andriukaitis, G.; Balčiunas, T.; Mücke, O.D.; Pugzlys, A.; et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 2012, 336, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Cousin, S.; Silva, F.; Teichmann, S.; Hemmer, M.; Buades, B.; Biegert, J. High-flux table-top soft X-ray source driven by sub-2-cycle, CEP stable, 1.85-μm 1-kHz pulses for carbon K-edge spectroscopy. Opt. Lett. 2014, 39, 5383–5386. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Miseikis, L.; Wood, D.; Austin, D.; Brahms, C.; Jarosch, S.; Strüber, C.; Ye, P.; Marangos, J. Measurement of sulfur L2, 3 and carbon K edge XANES in a polythiophene film using a high harmonic supercontinuum. Struct. Dyn. 2016, 3, 062603. [Google Scholar] [CrossRef] [PubMed]
- Itatani, J.; Levesque, J.; Zeidler, D.; Niikura, H.; Pépin, H.; Kieffer, J.C.; Corkum, P.B.; Villeneuve, D.M. Tomographic imaging of molecular orbitals. Nature 2004, 432, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Vozzi, C.; Negro, M.; Calegari, F.; Sansone, G.; Nisoli, M.; De Silvestri, S.; Stagira, S. Generalized molecular orbital tomography. Nat. Phys. 2011, 7, 822–826. [Google Scholar] [CrossRef]
- Torres, R.; Siegel, T.; Brugnera, L.; Procino, I.; Underwood, J.G.; Altucci, C.; Velotta, R.; Springate, E.; Froud, C.; Turcu, I.; et al. Extension of high harmonic spectroscopy in molecules by a 1300 nm laser field. Opt. Express 2010, 18, 3174–3180. [Google Scholar] [CrossRef] [PubMed]
- Vozzi, C.; Torres, R.; Negro, M.; Brugnera, L.; Siegel, T.; Altucci, C.; Velotta, R.; Frassetto, F.; Poletto, L.; Villoresi, P.; et al. High harmonic generation spectroscopy of hydrocarbons. Appl. Phys. Lett. 2010, 97, 241103. [Google Scholar] [CrossRef]
- Shiner, A.; Schmidt, B.; Trallero-Herrero, C.; Wörner, H.; Patchkovskii, S.; Corkum, P.; Kieffer, J.; Légaré, F.; Villeneuve, D. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nat. Phys. 2011, 7, 464–467. [Google Scholar] [CrossRef]
- Faccialà, D.; Pabst, S.; Bruner, B.D.; Ciriolo, A.G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; et al. Probe of Multi-electron Dynamics in Xenon by Caustics in High Order Harmonic Generation. arXiv 2016. [Google Scholar]
- Pabst, S.; Santra, R. Strong-field many-body physics and the giant enhancement in the high-harmonic spectrum of xenon. Phys. Rev. Lett. 2013, 111, 233005. [Google Scholar] [CrossRef] [PubMed]
- Worner, H.; Bertrand, J.; Hockett, P.; Corkum, P.; Villeneuve, D. Controlling the interference of multiple molecular orbitals in high-harmonic generation. Phys. Rev. Lett. 2010, 104, 233904. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Bertrand, J.B.; Lucchese, R.; Wörner, H.; Corkum, P.B.; Villeneuve, D.; Le, A.T.; Lin, C.D. Intensity dependence of multiple orbital contributions and shape resonance in high-order harmonic generation of aligned N2 molecules. Phys. Rev. A 2012, 85, 013405. [Google Scholar] [CrossRef]
- Ghimire, S.; DiChiara, A.D.; Sistrunk, E.; Agostini, P.; DiMauro, L.F.; Reis, D.A. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 2011, 7, 138–141. [Google Scholar] [CrossRef]
- Vampa, G.; Hammond, T.; Thiré, N.; Schmidt, B.; Légaré, F.; McDonald, C.; Brabec, T.; Corkum, P. Linking high harmonics from gases and solids. Nature 2015, 522, 462–464. [Google Scholar] [CrossRef] [PubMed]
- Luu, T.T.; Garg, M.; Kruchinin, S.Y.; Moulet, A.; Hassan, M.T.; Goulielmakis, E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 2015, 521, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S.W.; et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photonics 2014, 8, 119–123. [Google Scholar] [CrossRef]
- Doumy, G.; Wheeler, J.; Roedig, C.; Chirla, R.; Agostini, P.; DiMauro, L.F. Attosecond Synchronization of High-Order Harmonics from Midinfrared Drivers. Phys. Rev. Lett. 2009, 102, 093002. [Google Scholar] [CrossRef] [PubMed]
- Sola, I.; Mével, E.; Elouga, L.; Constant, E.; Strelkov, V.; Poletto, L.; Villoresi, P.; Benedetti, E.; Caumes, J.P.; Stagira, S.; et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nat. Phys. 2006, 2, 319–322. [Google Scholar] [CrossRef]
- Sansone, G.; Benedetti, E.; Calegari, F.; Vozzi, C.; Avaldi, L.; Flammini, R.; Poletto, L.; Villoresi, P.; Altucci, C.; Velotta, R.; et al. Isolated single-cycle attosecond pulses. Science 2006, 314, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, T.; Gallmann, L.; Abel, M.J.; Nagel, P.M.; Neumark, D.M.; Leone, S.R. Heterodyne mixing of laser fields for temporal gating of high-order harmonic generation. Phys. Rev. Lett. 2006, 97, 163901. [Google Scholar] [CrossRef] [PubMed]
- Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V.S.; Gagnon, J.; Uiberacker, M.; Aquila, A.L.; Gullikson, E.; Attwood, D.T.; Kienberger, R.; et al. Single-cycle nonlinear optics. Science 2008, 320, 1614–1617. [Google Scholar] [CrossRef] [PubMed]
- Saito, N.; Ishii, N.; Kanai, T.; Watanabe, S.; Itatani, J. Attosecond streaking measurement of extreme ultraviolet pulses using a long-wavelength electric field. Sci. Rep. 2016, 6, 35594. [Google Scholar] [CrossRef] [PubMed]
- Vozzi, C.; Calegari, F.; Frassetto, F.; Poletto, L.; Sansone, G.; Villoresi, P.; Nisoli, M.; De Silvestri, S.; Stagira, S. Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme. Phys. Rev. A 2009, 79, 033842. [Google Scholar] [CrossRef]
- Calegari, F.; Vozzi, C.; Negro, M.; Sansone, G.; Frassetto, F.; Poletto, L.; Villoresi, P.; Nisoli, M.; De Silvestri, S.; Stagira, S. Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver. Opt. Lett. 2009, 34, 3125–3127. [Google Scholar] [CrossRef] [PubMed]
- Tosa, V.; Altucci, C.; Kovács, K.; Negro, M.; Stagira, S.; Vozzi, C.; Velotta, R. Isolated attosecond pulse generation by Two-Mid-IR laser fields. IEEE J. Sel. Top. Quant. Electron. 2012, 18, 239–247. [Google Scholar] [CrossRef]
- Negro, M.; Vozzi, C.; Kovacs, K.; Altucci, C.; Velotta, R.; Frassetto, F.; Poletto, L.; Villoresi, P.; De Silvestri, S.; Tosa, V.; et al. Gating of high-order harmonics generated by incommensurate two-color mid-IR laser pulses. Laser Phys. Lett. 2011, 8, 875–879. [Google Scholar] [CrossRef]
- Vincenti, H.; Quéré, F. Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys. Rev. Lett. 2012, 108, 113904. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, J.A.; Borot, A.; Monchocé, S.; Vincenti, H.; Ricci, A.; Malvache, A.; Lopez-Martens, R.; Quéré, F. Attosecond lighthouses from plasma mirrors. Nat. Photonics 2012, 6, 829–833. [Google Scholar] [CrossRef]
- Kim, K.T.; Zhang, C.; Ruchon, T.; Hergott, J.F.; Auguste, T.; Villeneuve, D.; Corkum, P.; Quéré, F. Photonic streaking of attosecond pulse trains. Nat. Photonics 2013, 7, 651–656. [Google Scholar] [CrossRef]
- Silva, F.; Teichmann, S.M.; Cousin, S.L.; Hemmer, M.; Biegert, J. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nat. Commun. 2015, 6, 6611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Vampa, G.; Villeneuve, D.; Corkum, P. Attosecond lighthouse driven by sub-two-cycle, 1.8 μm laser pulses. J. Phys. B Atom. Mol. Opt. Phys. 2015, 48, 061001. [Google Scholar] [CrossRef]
- Hagen, K. Stereochemical applications of gas-phase electron diffraction. Parts A and B edited by I. Hargittai and M. Hargittai. Acta Crystallogr. Sect. B Struct. Sci. 1989, 45, 519–520. [Google Scholar] [CrossRef]
- Meckel, M.; Comtois, D.; Zeidler, D.; Staudte, A.; Pavičić, D.; Bandulet, H.; Pépin, H.; Kieffer, J.; Dörner, R.; Villeneuve, D.; et al. Laser-induced electron tunneling and diffraction. Science 2008, 320, 1478–1482. [Google Scholar] [CrossRef] [PubMed]
- Blaga, C.I.; Xu, J.; DiChiara, A.D.; Sistrunk, E.; Zhang, K.; Agostini, P.; Miller, T.A.; DiMauro, L.F.; Lin, C. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 2012, 483, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Pullen, M.G.; Wolter, B.; Le, A.T.; Baudisch, M.; Hemmer, M.; Senftleben, A.; Schröter, C.D.; Ullrich, J.; Moshammer, R.; Lin, C.D.; et al. Imaging an aligned polyatomic molecule with laser-induced electron diffraction. Nat. Commun. 2015, 6, 7262. [Google Scholar] [CrossRef] [PubMed]
- Pullen, M.; Wolter, B.; Le, A.T.; Baudisch, M.; Sclafani, M.; Pires, H.; Schröter, C.; Ullrich, J.; Moshammer, R.; Pfeifer, T.; et al. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets. Nat. Commun. 2016, 7, 11922. [Google Scholar] [CrossRef] [PubMed]
- Wolter, B.; Pullen, M.; Le, A.T.; Baudisch, M.; Doblhoff-Dier, K.; Senftleben, A.; Hemmer, M.; Schröter, C.; Ullrich, J.; Pfeifer, T.; et al. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene. Science 2016, 354, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.B.; Huismans, Y.; Smirnova, O.; Yuan, K.J.; Vrakking, M.; Bandrauk, A.D. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses. Phys. Rev. A 2011, 84, 043420. [Google Scholar] [CrossRef]
- Zhou, Y.; Tolstikhin, O.I.; Morishita, T. Near-forward rescattering photoelectron holography in strong-field ionization: Extraction of the phase of the scattering amplitude. Phys. Rev. Lett. 2016, 116, 173001. [Google Scholar] [CrossRef] [PubMed]
- Huismans, Y.; Rouzée, A.; Gijsbertsen, A.; Jungmann, J.; Smolkowska, A.; Logman, P.; Lepine, F.; Cauchy, C.; Zamith, S.; Marchenko, T.; et al. Time-resolved holography with photoelectrons. Science 2011, 331, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Meckel, M.; Staudte, A.; Patchkovskii, S.; Villeneuve, D.; Corkum, P.; Dörner, R.; Spanner, M. Signatures of the continuum electron phase in molecular strong-field photoelectron holography. Nat. Phys. 2014, 10, 594–600. [Google Scholar] [CrossRef]
- Huismans, Y.; Gijsbertsen, A.; Smolkowska, A.; Jungmann, J.; Rouzée, A.; Logman, P.; Lepine, F.; Cauchy, C.; Zamith, S.; Marchenko, T.; et al. Scaling laws for photoelectron holography in the midinfrared wavelength regime. Phys. Rev. Lett. 2012, 109, 013002. [Google Scholar] [CrossRef] [PubMed]
- Herink, G.; Solli, D.; Gulde, M.; Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 2012, 483, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Teichmann, S.; Rácz, P.; Ciappina, M.F.; Pérez-Hernández, J.; Thai, A.; Fekete, J.; Elezzabi, A.; Veisz, L.; Biegert, J.; Dombi, P. Strong-field plasmonic photoemission in the mid-IR at <1 GW/cm2 intensity. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- McNeil, B.; Thompson, N.; Dunning, D.; Sheehy, B. High harmonic attosecond pulse train amplification in a free electron laser. J. Phys. B Atom. Mol. Opt. Phys. 2011, 44, 065404. [Google Scholar] [CrossRef]
- Austin, D.R.; Kafka, K.R.; Lai, Y.H.; Wang, Z.; Zhang, K.; Li, H.; Blaga, C.I.; Allen, Y.Y.; DiMauro, L.F.; Chowdhury, E.A. High spatial frequency laser induced periodic surface structure formation in germanium by mid-IR femtosecond pulses. J. Appl. Phys. 2016, 120, 143103. [Google Scholar] [CrossRef]
- Konig, K.; Riemann, I.; Fischer, P.; Halbhuber, K. In tracellular nanosurgery with near infrared femtosecond laser pulses. Cell. Mol. Biol. 1999, 45, 195–201. [Google Scholar] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciriolo, A.G.; Negro, M.; Devetta, M.; Cinquanta, E.; Faccialà, D.; Pusala, A.; De Silvestri, S.; Stagira, S.; Vozzi, C. Optical Parametric Amplification Techniques for the Generation of High-Energy Few-Optical-Cycles IR Pulses for Strong Field Applications. Appl. Sci. 2017, 7, 265. https://doi.org/10.3390/app7030265
Ciriolo AG, Negro M, Devetta M, Cinquanta E, Faccialà D, Pusala A, De Silvestri S, Stagira S, Vozzi C. Optical Parametric Amplification Techniques for the Generation of High-Energy Few-Optical-Cycles IR Pulses for Strong Field Applications. Applied Sciences. 2017; 7(3):265. https://doi.org/10.3390/app7030265
Chicago/Turabian StyleCiriolo, Anna G., Matteo Negro, Michele Devetta, Eugenio Cinquanta, Davide Faccialà, Aditya Pusala, Sandro De Silvestri, Salvatore Stagira, and Caterina Vozzi. 2017. "Optical Parametric Amplification Techniques for the Generation of High-Energy Few-Optical-Cycles IR Pulses for Strong Field Applications" Applied Sciences 7, no. 3: 265. https://doi.org/10.3390/app7030265
APA StyleCiriolo, A. G., Negro, M., Devetta, M., Cinquanta, E., Faccialà, D., Pusala, A., De Silvestri, S., Stagira, S., & Vozzi, C. (2017). Optical Parametric Amplification Techniques for the Generation of High-Energy Few-Optical-Cycles IR Pulses for Strong Field Applications. Applied Sciences, 7(3), 265. https://doi.org/10.3390/app7030265