Self-Referenced Spectral Interferometry for Femtosecond Pulse Characterization
Abstract
:1. Introduction
2. Principle of SRSI
- (1)
- Fourier transform the interference signal from the frequency domain to the time domain and obtain the temporal signal containing and .
- (2)
- Separate and from the temporal signals obtained in Step 1 by using a suitable window function, e.g., a super Gaussian window. The width of the window function should be half of the gap between and (or half of the delay time between the reference pulse and the test pulse to be measured).
- (3)
- After inverse Fourier transforming and obtained in Step 2, we obtain the signals of and in the frequency domain, respectively.
- (4)
- Using and obtained in Step 3, the spectral amplitudes of the unknown pulse and the reference signal are analytically calculated using the following expressions [37]:
- (5)
- After calculating the phase using , the preliminary spectral phase of the pulse to be measured is calculated using Equation (4):
- (6)
- Fourier transforming the laser spectrum obtained in Step 4 with the spectral phase obtained in Step 5 yields the temporal profile and duration of the pulse to be measured.
- (i)
- Using the expression , we obtain the temporal profile of the reference pulse using the temporal profile of the unknown pulse obtained in Step 6 above. After taking the inverse Fourier transform of , the spectrum and spectral phase of the reference pulse are obtained.
- (ii)
- The new spectral phase of the reference pulse, , is then used to find the new spectral phase of the test pulse, , where C is the constant spectral phase with respect to the wavelength induced by dispersive optics, such as that in a beamsplitter, and can be obtained by a simple calculation. After taking the Fourier transform of the laser spectrum of the test pulse by using the new spectral phase, we obtain a new temporal profile and pulse duration for the input unknown pulse.
- (iii)
- After performing Steps (i) and (ii) only three times, the corrected spectrum and spectral phase of the pulse to be measured are obtained, and the precise temporal profile and pulse duration are then obtained.
3. Reference Pulse
4. SRSI for Temporal Profile Characterization
4.1. XPW-SRSI
4.2. SD-SRSI
4.3. TG-SRSI
5. Discussion and Prospect
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Spielmann, C.; Burnett, N.H.; Sartania, S.; Koppitsch, R.; Schnurer, M.; Kan, C.; Lenzner, M.; Wobrauschek, P.; Krausz, F. Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science 1997, 278, 661–664. [Google Scholar] [CrossRef]
- Durfee, C.G.; Backus, S.; Kapteyn, H.C.; Murnane, M.M. Intense 8 fs pulse generation in the deep ultraviolet. Opt. Lett. 1999, 24, 697–699. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.H.; Rundquist, A.; Wang, H.W.; Murnane, M.M.; Kapteyn, H.C. Generation of coherent soft X-rays at 2.7 nm using high harmonics. Phys. Rev. Lett. 1997, 79, 2967–2970. [Google Scholar] [CrossRef]
- Backus, S.; Peatross, J.; Zeek, Z.; Rundquist, A.; Taft, G.; Murnane, M.M.; Kapteyn, H.C. 16 fs, 1-mu j ultraviolet pulses generated by third-harmonic conversion in air. Opt. Lett. 1996, 21, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Gale, G.M.; Gallot, G.; Hache, F.; Sander, R. Generation of intense highly coherent femtosecond pulses in the mid infrared. Opt. Lett. 1997, 22, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, X.C.; Auston, D.H. Terahertz beam generation by femtosecond optical pulses in electrooptic materials. Appl. Phys. Lett. 1992, 61, 1784–1786. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Li, F.; Shen, X.; Li, R. Multicolored sideband generation based on cascaded four-wave mixing with the assistance of spectral broadening in multiple thin plates. Photonics Res. 2015, 3, 210–213. [Google Scholar] [CrossRef]
- Schenkel, B.; Biegert, J.; Keller, U.; Vozzi, C.; Nisoli, M.; Sansone, G.; Stagira, S.; De Silvestri, S.; Svelto, O. Generation of 3.8 fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. 2003, 28, 1987–1989. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, E.; Yamane, K.; Sekikawa, T.; Yamashita, M. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. J. Opt. Soc. Am. B Opt. Phys. 2007, 24, 985–989. [Google Scholar] [CrossRef]
- Chu, Y.; Gan, Z.; Liang, X.; Yu, L.; Lu, X.; Wang, C.; Wang, X.; Xu, L.; Lu, H.; Yin, D.; et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses. Opt. Lett. 2015, 40, 5011–5014. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, M.; Yamakawa, K.; Akahane, Y.; Ma, J.; Inoue, N.; Ueda, H.; Kiriyama, H. 0.85-pw, 33 fs Ti:sapphire laser. Opt. Lett. 2003, 28, 1594–1596. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.J.; Lee, S.K.; Sung, J.H.; Yoon, J.W.; Jeong, T.M.; Lee, J. Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser. Opt. Express 2012, 20, 10807–10815. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, C.; Shen, Z.; Zhang, Q.; Teng, H.; Wei, Z. High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt. Lett. 2011, 36, 3194–3196. [Google Scholar] [CrossRef] [PubMed]
- Lozhkarev, V.V.; Freidman, G.I.; Ginzburg, V.N.; Katin, E.V.; Khazanov, E.A.; Kirsanov, A.V.; Luchinin, G.A.; Mal′shakov, A.N.; Martyanov, M.A.; Palashov, O.V.; et al. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys. Lett. 2007, 4, 421–427. [Google Scholar] [CrossRef]
- Bahk, S.W.; Rousseau, P.; Planchon, T.A.; Chvykov, V.; Kalintchenko, G.; Maksimchuk, A.; Mourou, G.A.; Yanovsky, V. Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 2004, 29, 2837–2839. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.P.; Blanc, C.L.; Papadopoulos, D.N.; Ch′eriaux, G.; Georges, P.; Mennerat, G.; Druon, F.; Lecherbourg, L.; Pellegrina, A.; Ramirez, P.; et al. Design and current progress of the Apollon 10 PW project. High Power Laser Sci. Eng. 2015, 3, e2. [Google Scholar] [CrossRef]
- Esarey, E.; Schroeder, C.B.; Leemans, W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009, 81, 1229–1285. [Google Scholar] [CrossRef]
- Umstadter, D. Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasm. 2001, 8, 1774–1785. [Google Scholar] [CrossRef]
- Kobayashi, T.; Saito, T.; Ohtani, H. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 2001, 414, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Zewail, A.H. Femtochemistry: Atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 2000, 104, 5660–5694. [Google Scholar] [CrossRef]
- Luo, C.-W.; Wang, Y.-T.; Yabushita, A.; Kobayashi, T. Ultrabroadband time-resolved spectroscopy in novel types of condensed matter. Optica 2016, 3, 82–92. [Google Scholar] [CrossRef]
- Chen, H.J.; Wu, K.H.; Luo, C.W.; Uen, T.M.; Juang, J.Y.; Lin, J.Y.; Kobayashi, T.; Yang, H.D.; Sankar, R.; Chou, F.C.; et al. Phonon dynamics in CuxBi2Se3 (x = 0, 0.1, 0.125) and Bi2Se2 crystals studied using femtosecond spectroscopy. Appl. Phys. Lett. 2012, 101, 121912. [Google Scholar] [CrossRef]
- Meng, F.; Hu, J.; Han, W.; Liu, P.; Wang, Q. Morphology control of laser-induced periodic surface structure on the surface of nickel by femtosecond laser. Chin. Opt. Lett. 2015, 13, 62201–62205. [Google Scholar] [CrossRef]
- Dong, X.; Song, H.; Liu, S. Femtosecond laser induced periodic large-scale surface structures on metals. Chin. Opt. Lett. 2015, 13, 071001. [Google Scholar] [CrossRef]
- Denk, W.; Strickler, J.H.; Webb, W.W. 2-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76. [Google Scholar] [CrossRef] [PubMed]
- So, P.T.C.; Dong, C.Y.; Masters, B.R.; Berland, K.M. Two-photon excitation fluorescence microscopy. Ann. Rev. Biomed. Eng. 2000, 2, 399–429. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, K.; Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 2006, 50, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Walmsley, I.A.; Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photonics 2009, 1, 308–437. [Google Scholar] [CrossRef]
- Kane, D.J.; Trebino, R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. 1993, 29, 571–579. [Google Scholar] [CrossRef]
- Iaconis, C.; Walmsley, I.A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 1998, 23, 792–794. [Google Scholar] [CrossRef] [PubMed]
- Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses; Kluwer Academic Publishers: AH Dordrecht, The Netherlands, 2000; pp. 117–139. [Google Scholar]
- Birge, J.R.; Ell, R.; Kartner, F.X. Two-dimensional spectral shearing interferometry for few-cycle pulse characterization. Opt. Lett. 2006, 31, 2063–2065. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.W.; Gunn, J.M.; Dela Cruz, J.M.; Lozovoy, V.V.; Dantus, M. Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses. J. Opt. Soc. Am. B Opt. Phys. 2006, 23, 750–759. [Google Scholar] [CrossRef]
- Miranda, M.; Fordell, T.; Arnold, C.; L′Huillier, A.; Crespo, H. Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges. Opt. Express 2012, 20, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Oksenhendler, T.; Coudreau, S.; Forget, N.; Crozatier, V.; Grabielle, S.; Herzog, R.; Gobert, O.; Kaplan, D. Self-referenced spectral interferometry. Appl. Phys. B Lasers Opt. 2010, 99, 7–12. [Google Scholar] [CrossRef]
- Lepetit, L.; Cheriaux, G.; Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B Opt. Phys. 1995, 12, 2467–2474. [Google Scholar] [CrossRef]
- Oksenhendler, T. Self-referenced spectral interferometry theory. arXiv, 2012; arXiv:1204.4949. [Google Scholar]
- Minkovski, N.; Petrov, G.I.; Saltiel, S.M.; Albert, O.; Etchepare, J. Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration. J. Opt. Soc. Am. B Opt. Phys. 2004, 21, 1659–1664. [Google Scholar] [CrossRef]
- Moulet, A.; Grabielle, S.; Cornaggia, C.; Forget, N.; Oksenhendler, T. Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry. Opt. Lett. 2010, 35, 3856–3858. [Google Scholar] [CrossRef] [PubMed]
- Grabielle, S.; Moulet, A.; Forget, N.; Crozatier, V.; Coudreau, S.; Herzog, R.; Oksenhendler, T.; Cornaggia, C.; Gobert, O. Self-referenced spectral interferometry cross-checked with spider on sub-15 fs pulses. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 653, 121–125. [Google Scholar] [CrossRef]
- Trabattoni, A.; Oksenhendler, T.; Jousselin, H.; Tempea, G.; De Silvestri, S.; Sansone, G.; Calegari, F.; Nisoli, M. Self-referenced spectral interferometry for single-shot measurement of sub-5 fs pulses. Rev. Sci. Instrum. 2015, 86, 113106. [Google Scholar] [CrossRef] [PubMed]
- Trisorio, A.; Grabielle, S.; Divall, M.; Forget, N.; Hauri, C.P. Self-referenced spectral interferometry for ultrashort infrared pulse characterization. Opt. Lett. 2012, 37, 2892–2894. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, Y.; Kobayashi, T.; Li, R.; Xu, Z. Self-referenced spectral interferometry based on self-diffraction effect. J. Opt. Soc. Am. B Opt. Phys. 2012, 29, 29–34. [Google Scholar] [CrossRef]
- Oliver, T.A.A.; Lewis, N.H.C.; Fleming, G.R. Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy. Proc. Natl. Acad. Sci. USA 2014, 111, 10061–10066. [Google Scholar] [CrossRef] [PubMed]
- Metzkes, J.; Kluge, T.; Zeil, K.; Bussmann, M.; Kraft, S.D.; Cowan, T.E.; Schramm, U. Experimental observation of transverse modulations in laser-driven proton beams. New J. Phys 2014, 16, 192–198. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, J.; Chen, S.Y.; Golovin, G.; Banerjee, S.; Zhao, B.Z.; Powers, N.; Ghebregziabher, I.; Umstadter, D. Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power laser pulses. Opt. Lett. 2014, 39, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Durand, M.; Jarnac, A.; Houard, A.; Liu, Y.; Grabielle, S.; Forget, N.; Durecu, A.; Couairon, A.; Mysyrowicz, A. Self-guided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids: A new regime of filamentation. Phys. Rev. Lett. 2013, 110, 15003. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Jullien, A.; Forget, N.; Crozatier, V.; Tournois, P.; Lopez-Martens, R. Grism compressor for carrier-envelope phase-stable millijoule-energy chirped pulse amplifier lasers featuring bulk material stretcher. Opt. Lett. 2012, 37, 1196–1198. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.; Walmsley, I.A. Linear filter analysis of methods for ultrashort-pulse-shape measurements. J. Opt. Soc. Am. B Opt. Phys. 1995, 12, 1491–1499. [Google Scholar] [CrossRef]
- Fittinghoff, D.N.; Bowie, J.L.; Sweetser, J.N.; Jennings, R.T.; Krumbugel, M.A.; DeLong, K.W.; Trebino, R.; Walmsley, I.A. Measurement of the intensity and phase of ultraweak, ultrashort laser pulses. Opt. Lett. 1996, 21, 884–886. [Google Scholar] [CrossRef] [PubMed]
- Jullien, A.; Albert, O.; Burgy, F.; Hamoniaux, G.; Rousseau, L.P.; Chambaret, J.P.; Auge-Rochereau, F.; Cheriaux, G.; Etchepare, J.; Minkovski, N.; et al. 10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation. Opt. Lett. 2005, 30, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Jullien, A.; Kourtev, S.; Albert, O.; Cheriaux, G.; Etchepare, J.; Minkovski, N.; Saltiel, S.M. Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme. Appl. Phys. B Lasers Opt. 2006, 84, 409–414. [Google Scholar] [CrossRef]
- Jullien, A.; Canova, L.; Albert, O.; Boschetto, D.; Antonucci, L.; Cha, Y.H.; Rousseau, J.P.; Chaudet, P.; Cheriaux, G.; Etchepare, J.; et al. Spectral broadening and pulse duration reduction during cross-polarized wave generation: Influence of the quadratic spectral phase. Appl. Phys. B Lasers Opt. 2007, 87, 595–601. [Google Scholar] [CrossRef]
- Rhodes, M.; Steinmeyer, G.; Trebino, R. Standards for ultrashort-laser-pulse-measurement techniques and their consideration for self-referenced spectral interferometry. Appl. Opt. 2014, 53, D1–D11. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Okamura, K.; Kida, Y.; Kobayashi, T. Temporal contrast enhancement of femtosecond pulses by a self-diffraction process in a bulk kerr medium. Opt. Express 2010, 18, 22245–22254. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Okamura, K.; Kida, Y.; Kobayashi, T. Femtosecond pulses cleaning by transient-grating process in Kerr-optical media. Chin. Opt. Lett. 2011, 9, 051903. [Google Scholar]
- Liu, J.; Kobayashi, T. Generation and amplification of tunable multicolored femtosecond laser pulses by using cascaded four-wave mixing in transparent bulk media. Sensors 2010, 10, 4296–4341. [Google Scholar] [CrossRef] [PubMed]
- Eckbreth, A.C. Boxcars-crossed-beam phase-matched cars generation in gases. Appl. Phys. Lett. 1978, 32, 421–423. [Google Scholar] [CrossRef]
- Li, F.-J.; Liu, J.; Li, R.-X. Self-diffraction based self-reference spectral interferometry. Acta Phys. Sin. 2013, 62, 675. [Google Scholar]
- Liu, J.; Li, F.J.; Jiang, Y.L.; Li, C.; Leng, Y.X.; Kobayashi, T.; Li, R.X.; Xu, Z.Z. Transient-grating self-referenced spectral interferometry for infrared femtosecond pulse characterization. Opt. Lett. 2012, 37, 4829–4831. [Google Scholar] [CrossRef] [PubMed]
- Li, F.J.; Zhang, S.X.; Liu, Q.F.; Zhao, G.K.; Liu, J. A new multifunctional device for femtosecond pulse characterization with a wide operating range. Laser Phys. Lett. 2014, 11, 015302. [Google Scholar] [CrossRef]
- Shen, X.; Liu, J.; Li, F.J.; Wang, P.; Li, R.X. Extended transient-grating self-referenced spectral interferometry for sub-100 nj femtosecond pulse characterization. Chin. Opt. Lett. 2015, 13, 81901–81904. [Google Scholar] [CrossRef]
- Shen, X.; Wang, P.; Liu, J.; Li, R. Compact transient-grating self-referenced spectral interferometry for sub-nanojoule femtosecond pulse characterization. Appl. Opt. 2017, 56, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Palaniyappan, S.; Shah, R.C.; Johnson, R.P.; Shimada, T.; Jung, D.; Gautier, D.C.; Hegelich, B.M.; Fernandez, J.C. Single-shot 60 DB dynamic range laser contrast measurement using fourth-order cross-correlation from self-referencing-spectral-interferometry (fox-srsi). In Proceedings of the 2013 Conference on Lasers and Electro-Optics (CLEO): Science and Innovations, San Jose, CA, USA, 9–14 June 2013; p. 2. [Google Scholar]
Geometry | PG (XPW) | SD | TG |
---|---|---|---|
Sensitivity (multi-shot) | ~100 nJ | ~1000 nJ | ~10 nJ |
Sensitivity (single shot) | ~1 μJ | ~10 μJ | ~0.1 μJ |
Advantages | Self-phase-matching | Deep UV capability | Background free; Sensitive; Deep UV capability |
Disadvantages | Require polarizers | Non-self-phase-matching | Three beams |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Wang, P.; Liu, J.; Kobayashi, T.; Li, R. Self-Referenced Spectral Interferometry for Femtosecond Pulse Characterization. Appl. Sci. 2017, 7, 407. https://doi.org/10.3390/app7040407
Shen X, Wang P, Liu J, Kobayashi T, Li R. Self-Referenced Spectral Interferometry for Femtosecond Pulse Characterization. Applied Sciences. 2017; 7(4):407. https://doi.org/10.3390/app7040407
Chicago/Turabian StyleShen, Xiong, Peng Wang, Jun Liu, Takayoshi Kobayashi, and Ruxin Li. 2017. "Self-Referenced Spectral Interferometry for Femtosecond Pulse Characterization" Applied Sciences 7, no. 4: 407. https://doi.org/10.3390/app7040407
APA StyleShen, X., Wang, P., Liu, J., Kobayashi, T., & Li, R. (2017). Self-Referenced Spectral Interferometry for Femtosecond Pulse Characterization. Applied Sciences, 7(4), 407. https://doi.org/10.3390/app7040407