Pulse Propagation Models with Bands of Forbidden Frequencies or Forbidden Wavenumbers: A Consequence of Abandoning the Slowly Varying Envelope Approximation and Taking into Account Higher-Order Dispersion
Abstract
:1. Introduction
- (a)
- (b)
- (c)
- (d)
2. Dispersion Relations and Elliptic Curves
2.1. Dispersion Relation of Equation (4)
2.2. Dispersion Relation of Equation (5)
3. The Linear Equations (4) and (5)
3.1. The Issue of the Initial Conditions
- (i)
- (ii)
- The presence of higher-order nonlinearities in equations of the form:
- (iii)
- The presence of higher-order derivative in the equation:
- (iv)
- The solutions of the linear Equations (4) and (5) and the linear parts of Equations (6)–(8) contain decaying as well as growing modes of the form , as we shall see in Section 3.2 and Section 3.3. The existence of these modes makes the corresponding Cauchy problems linearly ill-posed [43].
- (v)
- Attemps of solving initial value problems for Equations (4)–(8) by finite differences in t, and Runge-Kutta algorithms in z, encounter difficulties that are typical of ill-posed problems.
3.2. Solutions of Equation (4)
3.3. Solutions of Equation (5)
4. The Nonlinear Equations (6)–(8)
4.1. The Solitons of Equation (6)
4.2. The Solitons of Equation (7)
4.3. The Solitons of Equation (8)
- if then: and ⇒ the solitons are embedded
- if then: ⇒ the solitons are NOT embedded
5. Conclusions
- the discovery of a relationship between Equations (4), (47), (A12) and (A13) and elliptic curves,
- the discovery that the interplay between and higher-order dispersive terms generates bands of forbidden frequencies or forbidden wavenumbers in the dispersion relations of Equations (4)–(8) and (47),
- the discovery that the Cauchy problems associated to Equations (4)–(8) are probably ill-posed,
- the discovery that short pulses who evolve according to Equations (4), (5) and (47) radiate in a novel and peculiar way,
- the discovery of four different types of soliton solutions in Equations (6)–(8),
- the discovery that some of the solitons of Equation (6)–(8) are embedded solitons,
- the discovery that Equations (A12) and (A13) might be related to modular forms or Weierstrass ℘ functions,
- the discovery that we might find a relation between the equations studied in this paper and cryptography.
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Elliptic Curves
Appendix B. Fermat’s Last Theorem
References
- Kuehl, H.H.; Zhang, C.Y. Effects of higher-order dispersion on envelope solitons. Phys. Fluids B 1990, 2, 889. [Google Scholar] [CrossRef]
- Wai, P.K.A.; Chen, H.H.; Lee, Y.C. Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers. Phys. Rev. A 1990, 41, 426–439. [Google Scholar] [CrossRef] [PubMed]
- Elgin, J.N.; Brabec, T.; Kelly, S.M.J. A perturbative theory of soliton propagation in the presence of third order dispersion. Opt. Commun. 1995, 114, 321–328. [Google Scholar] [CrossRef]
- Wen, S.; Chi, S. Approximate solution of optical soliton in lossless fibres with third-order dispersion. Opt. Quantum Electron. 1989, 21, 335–341. [Google Scholar] [CrossRef]
- Uzunov, I.M.; Gölles, M.; Lederer, F. Soliton interaction near the zero-dispersion wavelength. Phys. Rev. E 1995, 52, 1059–1071. [Google Scholar] [CrossRef]
- Höök, A.; Karlsson, M. Ultrashort solitons at the minimum-dispersion wavelength: Effects of fourth-order dispersion. Opt. Lett. 1993, 18, 1388–1390. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Höök, A. Soliton-like pulses governed by fourth order dispersion in optical fibers. Opt. Commun. 1994, 104, 303–307. [Google Scholar] [CrossRef]
- Karpman, V.I. Soliton-like pulses governed by fourth order dispersion in optical fibers. Phys. Lett. A 1994, 193, 355–358. [Google Scholar] [CrossRef]
- Akhmediev, N.N.; Buryak, A.V.; Karlsson, M. Radiationless optical solitons with oscillating tails. Opt. Commun. 1994, 110, 540–544. [Google Scholar] [CrossRef]
- Cavalcanti, S.B.; Cressoni, J.C.; da Cruz, H.R.; Gouveia-Neto, A.S. Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation. Phys. Rev. A 1991, 43, 6162–6165. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, J.; Espinosa, A. Soliton-Like Solution of an Extended NLS Equation Existing in Resonance with Linear Dispersive Waves. J. Phys. Soc. Jpn. 1997, 66, 2601–2607. [Google Scholar] [CrossRef]
- Karpman, V.I. Evolution of solitons described by higher-order nonlinear Schrödinger equations. Phys. Lett. A 1998, 244, 397–400. [Google Scholar] [CrossRef]
- Hayata, K.; Koshiba, M. Algebraic solitary-wave solutions of a nonlinear Schrödinger equation. Phys. Rev. E 1995, 51, 1499–1502. [Google Scholar] [CrossRef]
- Fujioka, J.; Espinosa, A. Stability of the Bright-Type Algebraic Solitary-Wave Solutions of Two Extended Versions of the Nonlinear Schrödinger Equation. J. Phys. Soc. Jpn. 1996, 65, 2440–2446. [Google Scholar] [CrossRef]
- Micallef, R.W.; Afanasjev, V.V.; Kivshar, Y.S.; Love, J.D. Optical solitons with power-law asymptotics. Phys. Rev. E 1996, 54, 2936–2942. [Google Scholar] [CrossRef]
- Pelinovsky, D.E.; Afanasjev, V.V.; Kivshar, Y.S. Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation. Phys. Rev. E 1996, 53, 1940–1953. [Google Scholar] [CrossRef]
- Davydova, T.A.; Zaliznyak, Y.A. Schrödinger ordinary solitons and chirped solitons: Fourth-order dispersive effects and cubic-quintic nonlinearity. Physics D 2001, 156, 260–282. [Google Scholar] [CrossRef]
- Espinosa-Cerón, A.; Fujioka, J.; Gómez-Rodríguez, A. Embedded Solitons: Four-Frequency Raiation, Front Propagation and Radiation Inhibition. Phys. Scr. 2003, 67, 314–324. [Google Scholar] [CrossRef]
- Fujioka, J.; Espinosa, A.; Rodríguez, R.F. Fractional optical solitons. Phys. Lett. A 2010, 374, 1126–1134. [Google Scholar] [CrossRef]
- Fujioka, J.; Espinosa, A. Radiationless Higher-Order Embedded Solitons. J. Phys. Soc. Jpn. 2013, 82, 034007. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Agrawal, G.P. Optical Solitons: From Fibers to Photonic Crystals; Academic Press: San Diego, CA, USA, 2003; Sections 3.6.2 and 6.2.3. [Google Scholar]
- Agrawal, G.P. Nonlinear Fiber Optics, 5th ed.; Academic Press: Oxford, UK, 2013; Section 4.4.1; pp. 116–119. [Google Scholar]
- Fujioka, J.; Espinosa, A. Diversity of solitons in a generalized nonlinear Schrödinger equation with self-steepening and higher-order dispersive and nonlinear terms. Chaos 2015, 25, 113114. [Google Scholar] [CrossRef] [PubMed]
- Porsezian, K.; Nakkeeran, K. Optical Solitons in Presence of Kerr Dispersion and Self-Frequency Shift. Phys. Rev. Lett. 1996, 76, 3955–3958. [Google Scholar] [CrossRef] [PubMed]
- Karpman, V.I.; Rasmussen, J.J.; Shagalov, A.G. Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation. Phys. Rev. E 2001, 64, 026614. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Golam Ali, S.; Talukdar, B. Evolution of optical pulses in the presence of third-order dispersion. Pramana J. Phys. 2009, 72, 939–950. [Google Scholar] [CrossRef]
- Wang, P.; Shang, T.; Feng, L.; Du, Y. Solitons for the cubic-quintic nonlinear Schrödinger equation with Raman effect in nonlinear optics. Opt. Quantum Electron. 2014, 46, 1117–1126. [Google Scholar] [CrossRef]
- Christodoulides, D.N.; Joseph, R.I. Femtosecond solitary waves in optical fibers—Beyond the slowly varying envelope approximation. Appl. Phys. Lett. 1985, 47, 76–78. [Google Scholar] [CrossRef]
- Leblond, H.; Mihalache, D. Optical solitons in the few-cycle regime: Recent theoretical results. Romanian Rep. Phys. 2012, 63, 1254–1266. [Google Scholar]
- Leblond, H.; Mihalache, D. Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 2013, 523, 61–126. [Google Scholar] [CrossRef]
- Leblond, H.; Mihalache, D. Ultrashort light bullets described by the two-dimensional sine-Gordon equation. Phys. Rev. A 2010, 81, 063815. [Google Scholar] [CrossRef]
- Leblond, H.; Kremer, D.; Mihalache, D. Ultrashort spatiotemporal optical solitons in quadratic nonlinear media: Generation of line and lump solitons from few-cycle input pulses. Phys. Rev. A 2009, 80, 053812. [Google Scholar] [CrossRef]
- Leblond, H.; Kremer, D.; Mihalache, D. Collapse of ultrashort spatiotemporal pulses described by the cubic generalized Kadomtsev-Petviashvili equation. Phys. Rev. A 2010, 81, 033824. [Google Scholar] [CrossRef]
- Chamorro-Posada, P.; McDonald, G.S.; New, G.H.C. Non-paraxial beam propagation methods. Opt. Commun. 2001, 192, 1–12. [Google Scholar] [CrossRef]
- Blair, S. Nonparaxial one-dimensional spatial solitons. Chaos 2000, 10, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Christian, J.M.; McDonald, G.S.; Chamorro-Posada, P. Helmholtz algebraic solitons. J. Phys. A 2010, 43, 085212. [Google Scholar] [CrossRef]
- Tzoar, N.; Jain, M. Self-phase modulation in long-geometry optical waveguides. Phys. Rev. A 1981, 23, 1266–1270. [Google Scholar] [CrossRef]
- Fang, X.; Karasawa, N.; Morita, R.; Windeler, R.S.; Yamashita, M. Nonlinear propagation of a Few-Optical-Cycle Pulses in a Photonic Crystal Fiber—Experimental and Theoretical Studies Beyond the Slowly Varying-Envelope Approximation. IEEE Photonics Technol. Lett. 2003, 15, 233–235. [Google Scholar] [CrossRef]
- Koblitz, N. Introduction to Elliptic Curves and Modular Forms, 2nd ed.; Springer-Verlag: New York, NY, USA, 1993; p. 108. [Google Scholar]
- Fúster Sabater, A.; Hernández Encinas, L.; Martín Muñoz, A.; Montoya Vitini, F.; Muñoz Masqué, J. Criptografía, Protección de Datos y Aplicaciones, 1st ed.; Alfaomega: México City, México, 2013; pp. 199–204. [Google Scholar]
- Kivshar, Y.S.; Pelinovsky, D.E. Self-focusing and transverse instabilities of solitary waves. Phys. Rep. 2000, 331, 117–195. [Google Scholar] [CrossRef]
- Birnir, B.; Kenig, C.E.; Ponce, G.; Svanstedt, N.; Vega, L. On the Ill-Posedness of the IVP for the Generalized Korteweg-De Vries and Nonlinear Schrödinger Equations. J. Lond. Math. Soc. 1996, 53, 551–559. [Google Scholar] [CrossRef]
- Daripa, P. Some useful filtering techniques for illposed problems. J. Comput. Appl. Math. 1998, 100, 161–171. [Google Scholar] [CrossRef]
- Hao, D.N.; Van, T.D.; Gorenflo, R. Towards the Cauchy problem for the Laplace equation. In Partial Differential Equations; Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences: Warsaw, Poland, 1992; Volume 27, pp. 111–128. [Google Scholar]
- Yang, J.; Malomed, B.A.; Kaup, D.J. Embedded Solitons in Second-Harmonic-Generating Systems. Phys. Rev. Lett. 1999, 83, 1958–1961. [Google Scholar] [CrossRef]
- Fujioka, J.; Espinosa-Cerón, A.; Rodríguez, R.F. A survey of embedded solitons. Rev. Mex. Fís. 2006, 52, 6–14. [Google Scholar]
- Ma, W.X.; Lee, J.-H. A transformed rational function method and exact solutions for the 3 + 1 dimensional Jimbo-Miwa equation. Chaos Solitons Fractals 2009, 42, 1356–1363. [Google Scholar] [CrossRef]
- Ma, W.X.; Chen, M. Direct search for exact solutions to the nonlinear Schrödinger equation. Appl. Math. Comput. 2009, 215, 2835–2842. [Google Scholar] [CrossRef]
- Ma, W.X. A refined invariant subspace method and applications to evolution equations. Sci. China Math. 2012, 55, 1769–1778. [Google Scholar] [CrossRef]
- Piché, M.; Cormier, J.F.; Zhu, X. Bright optical soliton in the presence of fourth-order dispersion. Opt. Lett. 1996, 21, 845–847. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Malomed, B.A.; Kaup, D.J.; Champneys, A.R. Embedded solitons: A new type of solitary wave. Math. Comput. Simul. 2001, 56, 585–600. [Google Scholar] [CrossRef]
- Hruby, J. On the Postquantum Cipher Scheme. Available online: https://eprint.iacr.org/2006/246.pdf (accessed on 28 October 2016).
- Ivorra Castillo, C. Curvas Elípticas. Available online: https://www.uv.es/ivorra/Libros/Libros.htm (accessed on 30 July 2015).
- Ellenberg, J.S. Arithmetic Geometry. In The Princeton Companion to Mathematics; Gowers, T., Barrow-Green, J., Leader, I., Eds.; Princeton University Press: Princeton, NJ, USA, 2008; Section IV.5; pp. 372–383. [Google Scholar]
- Buzzard, K. Modular Forms. In The Princeton Companion to Mathematics; Gowers, T., Barrow-Green, J., Leader, I., Eds.; Princeton University Press: Princeton, NJ, USA, 2008; Section III.59; pp. 250–252. [Google Scholar]
- Gowers, T.; Barrow-Green, J.; Leader, I. (Eds.) The Princeton Companion to Mathematics; Princeton University Press: Princeton, NJ, USA, 2008; Section V.10; pp. 691–693. [Google Scholar]
- Singh, S. Fermat’s Last Theorem; 4th Estate: London, UK, 1997. [Google Scholar]
- Breuil, C.; Conrad, B.; Diamond, F.; Taylor, R. On the modularity of elliptic curves over Q: Wild 3-adic exercises. J. Am. Math. Soc. 2001, 14, 843–939. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujioka, J.; Gómez-Rodríguez, A.; Espinosa-Cerón, Á. Pulse Propagation Models with Bands of Forbidden Frequencies or Forbidden Wavenumbers: A Consequence of Abandoning the Slowly Varying Envelope Approximation and Taking into Account Higher-Order Dispersion. Appl. Sci. 2017, 7, 340. https://doi.org/10.3390/app7040340
Fujioka J, Gómez-Rodríguez A, Espinosa-Cerón Á. Pulse Propagation Models with Bands of Forbidden Frequencies or Forbidden Wavenumbers: A Consequence of Abandoning the Slowly Varying Envelope Approximation and Taking into Account Higher-Order Dispersion. Applied Sciences. 2017; 7(4):340. https://doi.org/10.3390/app7040340
Chicago/Turabian StyleFujioka, Jorge, Alfredo Gómez-Rodríguez, and Áurea Espinosa-Cerón. 2017. "Pulse Propagation Models with Bands of Forbidden Frequencies or Forbidden Wavenumbers: A Consequence of Abandoning the Slowly Varying Envelope Approximation and Taking into Account Higher-Order Dispersion" Applied Sciences 7, no. 4: 340. https://doi.org/10.3390/app7040340
APA StyleFujioka, J., Gómez-Rodríguez, A., & Espinosa-Cerón, Á. (2017). Pulse Propagation Models with Bands of Forbidden Frequencies or Forbidden Wavenumbers: A Consequence of Abandoning the Slowly Varying Envelope Approximation and Taking into Account Higher-Order Dispersion. Applied Sciences, 7(4), 340. https://doi.org/10.3390/app7040340