Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors
Abstract
:1. Introduction
2. The Experimental Platform
2.1. Test Facility and Test Section
2.2. Manufacturing and Mounting of the Instrumented Fuel Assembly
2.3. Instrumentation of Fuel Pin and Validation
2.4. Egress of Optical Fibres and Interrogation
3. Assessment of Flow-Induced Vibration of Fuel Assembly
3.1. Vibration Amplitude of the Fuel Assembly During Various Flow Conditions
3.2. Strain Along Fuel Pin Length and Vibration Statistics
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Doebling, S.W.; Farrar, C.R.; Prime, M.B. A summary review of vibration-based damage identification methods. Shock Vib. Dig 1998, 30, 91–105. [Google Scholar] [CrossRef]
- Deodatis, G.; Ellingwood, B.; Frangopol, D. Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Juergens, J.; Adamovsky, G.; Morscher, G.; Park, B.; Floyd, B.; Corporation, A.; Park, F. Thermal Evaluation of Fiber Bragg Gratings at Extreme Temperatures. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Mihailov, S.J. Fiber Bragg grating sensors for harsh environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef] [PubMed]
- De Pauw, B.; Lamberti, A.; Rezayat, A.; Ertveldt, J.; Vanlanduit, S.; Van Tichelen, K.; Geernaert, T.; Berghmans, F. Signal-to-noise ratio evaluation of fibre Bragg gratings for dynamic strain sensing at elevated temperatures in a liquid metal environment. J. Light. Technol. 2015, 33, 1–8. [Google Scholar] [CrossRef]
- Cusano, A.; Cutolo, A.; Albert, J. Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation; Bentham Science Publishers: Sharjah, UAE, 2011. [Google Scholar]
- Aït Abderrahim, H.; Baeten, P.; De Bruyn, D.; Fernandez, R. MYRRHA—A multi-purpose fast spectrum research reactor. Energy Convers. Manag. 2012, 63, 4–10. [Google Scholar] [CrossRef]
- De Bruyn, D.; Aït Abderrahim, H.; Baeten, P.; Fernandez, R. MYRRHA, the Multi-purpose Hybrid Research Reactor for High-Tech Applications. In Proceedings of the ICAPP 2011 “Performance & Flexibility: The Power of Innovation”, Paris, France, 2–5 May 2011; pp. 472–478. [Google Scholar]
- Blevins, R.D. Flow-induced vibration in nuclear reactors: A review. Prog. Nucl. Energy 1979, 4, 25–49. [Google Scholar] [CrossRef]
- Kaneko, S.; Nakamura, T.; Inada, F.; Industry, E.P.; Kato, M. FIV Classifications and Lessons from Practical Experences; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Paidoussis, M.P. Fluid-Structure Interactions—Slender Structures and Axial Flow, 2nd ed.; Elsevier Academic Press: Montreal, QC, Canada, 2004. [Google Scholar]
- Prakash, V.; Thirumalai, M.; Prabhakar, R.; Vaidyanathan, G. Assessment of flow induced vibration in a sodium–Sodium heat exchanger. Nucl. Eng. Des. 2009, 239, 169–179. [Google Scholar] [CrossRef]
- Pettigrew, M.J. The behaviour of weldable strain gauges under nuclear reactor core conditions. Nucl. Eng. Des. 2013, 263, 350–361. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Yu, S.D. An experimental investigation of effects of angular misalignment on flow-induced vibration of simulated CANDU fuel bundles. Nucl. Eng. Des. 2012, 250, 294–307. [Google Scholar] [CrossRef]
- Wu, L.; Lu, D.; Liu, Y. Experimental Investigation on Flow-Induced Vibration of Fuel Rods in Supercritical Water Loop. Sci. Technol. Nucl. Install. 2014, 1, 9. [Google Scholar] [CrossRef]
- OECD/NEA association. Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies; OECD Publishing: Paris, France, 2007. [Google Scholar]
- De Pauw, B.; Lamberti, A.; Vanlanduit, S.; Van Tichelen, K.; Geernaert, T.; Berghmans, F. Signal-to-noise ratio evaluation with draw tower fibre Bragg gratings (DTGs) for dynamic strain sensing at elevated temperatures and corrosive environment. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; pp. 18–21. [Google Scholar]
- Van Tichelen, K.; Greco, M.; Kennedy, G.; Mirelli, F. COMPLOT and E-SCAPE: Facilities for Liquid-Metal, Pool-Type Thermal Hydraulic Investigations and their Associated R & D Program in the Frame of the MYRRHA Project. Preceedings of the 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10), Tokyo, Japan, 14–18 December 2014; pp. 1–13. [Google Scholar]
- Kennedy, G.; Van Tichelen, K.; Greco, M. Experimental investigation of the pressure loss characteristics of the full-scale MYRRHA fuel bundle in the COMPLOT LBE facility. In Proceedings of the 16th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-16), Chicago, IL, USA, 30 August–5 September 2015; pp. 61–73. [Google Scholar]
- De Pauw, B.; Vanlanduit, S.; Van Tichelen, K.; Geernaert, T.; Chah, K.; Berghmans, F. Benchmarking of deformation and vibration measurement techniques for nuclear fuel pins. Measurement 2013, 46, 3647–3653. [Google Scholar] [CrossRef]
- Othonos, A.; Kalli, K. Fiber Bragg Gratings: Fundamentals and Application in Telecommunications and Sensing; Artech House: London, UK, 1999. [Google Scholar]
- Kashyap, R. Fibre Bragg Gratings; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- FBGS International. Available online: http://www.fbgs.com/technology/dtg-technology/ (accessed on 23 June 2017).
- Johnson, D. Draw-tower process creates high-quality FBG arrays. Laser Focus World 2012, 10, 53–56. [Google Scholar]
- Lamberti, A.; Vanlanduit, S.; De Pauw, B.; Berghmans, F. A novel fast phase correlation algorithm for peak wavelength detection of fiber Bragg grating sensors. Opt. Express 2014, 22, 7099–7112. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, A.; Vanlanduit, S.; De Pauw, B.; Berghmans, F. Peak detection in fiber Bragg grating using a fast phase correlation algorithm. Proc. SPIE 2014, 9141, 91410Y. [Google Scholar]
- Lamberti, A.; Vanlanduit, S.; De Pauw, B.; Berghmans, F. Influence of Fiber Bragg Grating Spectrum Degradation on the Performance of Sensor Interrogation Algorithms. Sensors 2014, 14, 24258–24277. [Google Scholar] [CrossRef] [PubMed]
- FBGS International. Available online: http://www.fbgs.com/products/measurement-devices/overview/ (accessed on 23 June 2017).
- De Pauw, B.; Lamberti, A.; Ertveldt, J.; Rezayat, A.; Van Tichelen, K.; Vanlanduit, S.; Berghmans, F. Vibration monitoring using fibre optic sensors in a lead-bismuth eutectic cooled nuclear fuel assembly. Sensors 2016, 16, 571. [Google Scholar] [CrossRef] [PubMed]
- Miner, M.A. Cumulative damage in fatigue. J. Appl. Mech. 1945, 12, 159–164. [Google Scholar]
- Mohany, A.; Hassan, M. Modelling of fuel bundle vibration and the associated fretting wear in a CANDU fuel channel. Nucl. Eng. Des. 2013, 264, 214–222. [Google Scholar] [CrossRef]
- Ko, W.L.; Richards, W.L.; Van Tran, T. Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures; NASA/TP: Edwards, CA, USA, 2007.
Status | Unmounted FBGs (At Room Temperature) | Mounted on Fuel Pin (At Room Temperature) | Installed in Heated Test Section Filled With LBE |
---|---|---|---|
representative spectrum | |||
FBGs observed | 84 | 84 | 84 |
mean ΔλB | 0 ± 0 nm | −0.124 nm ± 0.439 nm | 4.686 nm ± 0.877 nm |
FWHM | 0.133 nm ± 0.022 nm | 0.144 nm ± 0.020 nm | 0.173 nm ± 0.053 nm |
UNB | 0.011 nm ± 0.009 nm | 0.003 nm ± 0.006 nm | 0.010 nm ± 0.045 nm |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauw, B.D.; Kennedy, G.; Tichelen, K.V.; Geernaert, T.; Thienpont, H.; Berghmans, F. Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors. Appl. Sci. 2017, 7, 864. https://doi.org/10.3390/app7080864
Pauw BD, Kennedy G, Tichelen KV, Geernaert T, Thienpont H, Berghmans F. Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors. Applied Sciences. 2017; 7(8):864. https://doi.org/10.3390/app7080864
Chicago/Turabian StylePauw, Ben De, Graham Kennedy, Katrien Van Tichelen, Thomas Geernaert, Hugo Thienpont, and Francis Berghmans. 2017. "Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors" Applied Sciences 7, no. 8: 864. https://doi.org/10.3390/app7080864
APA StylePauw, B. D., Kennedy, G., Tichelen, K. V., Geernaert, T., Thienpont, H., & Berghmans, F. (2017). Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors. Applied Sciences, 7(8), 864. https://doi.org/10.3390/app7080864