Standing Wave Field Distribution in Graded-Index Antireflection Coatings
Abstract
:1. Introduction
2. Theory and Model
3. Results
3.1. Linear Distribution of Index
3.2. Exponential Distribution of Index
3.3. Polynomial Distribution of Index
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lowdermilk, W.H.; Milam, D. Graded-index antireflection surfaces for high-power laser applications. Appl. Phys. Lett. 1980, 36, 891–893. [Google Scholar] [CrossRef]
- Shunli, C.; Yuan’an, Z.; Hongbo, H.; Jianda, Z. Effect of standing-wave field distribution on femosecond laser-induced damage of HfO2/SiO2 mirror coating. Chin. Opt. Lett. 2011, 8, 94–97. [Google Scholar] [CrossRef]
- Li, X.; Gross, M.; Oreb, B.; Jun, S. Increased laser-damage resistance of sol–gel silica coating by structure modification. J. Phys. Chem. C 2012, 116, 18367–18371. [Google Scholar] [CrossRef]
- Yang, F.; Wenfeng, Y.; Liangcai, C.; Huanliang, C.; Zuhai, C. Optimize design of high power CO laser window coatings. Laser J. 2007, 28, 18–19. [Google Scholar]
- Mende, M.; Jensen, L.O.; Ehlers, H.; Riggers, W.; Blaschke, H.; Ristau, D. Laser-induced damage of pure and mixture material high reflectors for 355 nm and 1064 nm wavelength. In Proceedings of the International Society for Optics and Photonics, SPIE Optical Systems Design, Marseille, France, 5–8 September 2011. [Google Scholar]
- Deng, H.X.; Xiang, X.; Zheng, W.G.; Yuan, X.D.; Wu, S.Y.; Jiang, X.D.; Gao, F.; Zu, X.T.; Sun, K. Theory of absorption rate of carriers in fused silica under intense laser irradiation. J. Appl. Phys. 2010, 108, 103116. [Google Scholar] [CrossRef]
- Neuman, G.A. Anti-reflective coatings by APCVD using graded index layers. J. Non-Cryst. Solids 1997, 218, 92–99. [Google Scholar] [CrossRef]
- Bovard, B.G. Rugate filter theory: An overview. Appl. Opt. 1993, 32, 5427–5442. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, J.A.; Poitras, D.; Penghui, M.; Himanshu, V.; Michael, A. Towards “perfect” antireflection coatings: Numerical investigation. Appl. Opt. 2002, 41, 3075–3083. [Google Scholar] [CrossRef] [PubMed]
- Masouleh, F.F.; Rozati, S.M.; Das, N. Performance improvement of plasmonic-based thin film assisted MSM-PDs. Opt. Int. J. Light Electron Opt. 2017, 157, 733–742. [Google Scholar] [CrossRef]
- Das, N.; Islam, S. Design and analysis of nano-structured gratings for conversion efficiency improvement in GaAs solar cells. Energies 2016, 9, 690. [Google Scholar] [CrossRef]
- Das, N.; Wongsodihardjo, H.; Islam, S. Modeling of multi-junction photovoltaic cell using MATLAB/Simulink to improve the conversion efficiency. Renew. Energy 2015, 74, 917–924. [Google Scholar] [CrossRef]
- Xue, S.W.; Zu, X.T.; Zhou, W.L.; Deng, H.X.; Xiang, X.; Zhang, L.; Deng, H. Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloys Compd. 2008, 448, 21–26. [Google Scholar] [CrossRef]
- Masouleh, F.F.; Das, N.; Mashayekhi, H.R. Optimization of light transmission efficiency for nano-grating assisted MSM-PDs by varying physical parameters. Photon. Nanostruct. Fundam. Appl. 2014, 12, 45–53. [Google Scholar] [CrossRef]
- Das, N.; Ghadeer, A.A.; Islam, S. Modelling and analysis of multi-junction solar cells to improve the conversion efficiency of photovoltaic systems. In Proceedings of the IEEE Power Engineering Conference, Perth, Australia, 28 September–1 October 2014; pp. 1–5. [Google Scholar]
- Monaco, S.F. Reflectance of an Inhomogeneous Thin Film. J. Opt. Soc. Am. 1961, 51, 280–282. [Google Scholar] [CrossRef]
- Yan, Q.R.; Huang, W.; Zhang, Y.D. The gradient-index thin film design of infrared films on ZnSe Substrate for 3~12 μm. Laser Infrared 2008, 38, 177–188. [Google Scholar]
- Yan, L.H. Study on Nanostructures and Optical Properties of Broadband Reinforced Silica Optical Thin Films; China Academy of Engineering Physics: Mianyang, Sichuan, China, 2016. [Google Scholar]
- Apfel, J.H.; Enemark, E.A.; Milam, D. Effects of barrier layers and surface smoothness on 150-ps, 1. 064-. mu. m laser damage of AR coatings on glass. In Proceedings of the Symposium on Optical Materials for High Power Lasers, Boulder, CO, USA, 4 October 1977; Volume 18, p. 1880. [Google Scholar]
- Field, S.; Hazelwood, E.; Bourke, B.; Bourke, J.F. Multishort laser damage in transparent solids: Theory of accumulation effect. Proc. SPIE 1995, 8, e83326. [Google Scholar]
- Chen, X.Q.; Zu, X.T.; Zheng, W.G.; Jiang, X.D.; Lu, H.B.; Ren, H.; Zhang, Y.Z.; Liu, C.M. Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and ibsd SiO2 thin films. Acta Phys. Sin. 2006, 55, 1201–1206. [Google Scholar]
- Deng, H.X.; Zu, X.T.; Xiang, X.; Sun, K. Quantum theory for cold avalanche ionization in solids. Phys. Rev. Lett. 2010, 105, 113603. [Google Scholar] [CrossRef] [PubMed]
- Gorshkov, B.G.; Epifanov, A.S.; Manenkov, A.A. Avalanche ionization produced in solids by large radiation quanta and relative role of multiphoton ionization in laser-induced breakdown. J. Exp. Theor. Phys. 1979, 49, 309. [Google Scholar]
- Deng, H.X.; Zu, X.T.; Zheng, W.G. Gradient optical film taking the place of classical high-reflectivity film. High Power Laser Part. Beams 2007, 19, 58–62. [Google Scholar]
- Zhao, Q.; Fan, Z.X. Effect of optical film interface absorption on temperature field. Acta Opt. Sin. 1996, 16, 777–782. [Google Scholar]
- Poitras, D.; Dobrowolski, J.A. Toward perfect antireflection coatings—2. Theory. Appl. Opt. 2002, 41, 3075–3083. [Google Scholar] [CrossRef]
- Xiaolan, L. Design and Preparation of TiO2-Based Anti-Reflection Films. Master’s Thesis, Hunan University, Changsha, China, 25 May 2011. [Google Scholar]
- Monaco, S.F. Homogeneous—In-homogeneous thin-film combinations. J. Opt. Soc. Am. 1961, 51, 855–858. [Google Scholar] [CrossRef]
- Lin, Y.C. Principles of Optical Film; National Defense Industry Press: Beijing, China, 1990. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.; Dong, X.; Gao, H.; Yuan, X.; Zheng, W.; Zu, X. Standing Wave Field Distribution in Graded-Index Antireflection Coatings. Appl. Sci. 2018, 8, 65. https://doi.org/10.3390/app8010065
Deng H, Dong X, Gao H, Yuan X, Zheng W, Zu X. Standing Wave Field Distribution in Graded-Index Antireflection Coatings. Applied Sciences. 2018; 8(1):65. https://doi.org/10.3390/app8010065
Chicago/Turabian StyleDeng, Hongxiang, Xianyue Dong, Huanhuan Gao, Xiaodong Yuan, Wanguo Zheng, and Xiaotao Zu. 2018. "Standing Wave Field Distribution in Graded-Index Antireflection Coatings" Applied Sciences 8, no. 1: 65. https://doi.org/10.3390/app8010065
APA StyleDeng, H., Dong, X., Gao, H., Yuan, X., Zheng, W., & Zu, X. (2018). Standing Wave Field Distribution in Graded-Index Antireflection Coatings. Applied Sciences, 8(1), 65. https://doi.org/10.3390/app8010065