1. Introduction
Intelligent transport system (ITS) is an emerging type of information and communication technology (ICT) application, which is based on inter-vehicular communication (IVC). IVC enabled vehicles provide updated information regarding traffic conditions. ITS can be used to minimize road accidents, congestion, and improve traffic efficiency. ITS plays an important role in the economy of a country by reducing fuel consumption and efficient time management of individuals [
1,
2]. Intelligent transport system stations (ITS-Ss) with the arrangement of wireless communication is a new growing area of research to reduce road accidents, congestion, and improve traffic efficiency [
3].
Vehicular ad hoc network (VANET) is an important component of ITS. VANET uses ITS mechanisms to provide reliable information about vehicle’s location, speed, heading, and road conditions. Increase in population and lack of seriousness in driving results in traffic congestions, road accidents and unnecessary delays in traveling [
4].
Figure 1 shows one of the scenarios of un-seriousness in driving. For the betterment of society, there should be a positive use of technology in transport systems to reduce congestion, accidents, and unnecessary delays in traveling. In order to provide the best services to humanity, ITS is introduced to avoid congestion, traffic jams, and accidents, and to improve traffic efficiency [
5].
ITS has a wide range of applications [
6]. However, generally, ITS applications are classified into advanced driver assistance systems (ADAS), advanced traveler information systems (ATIS), and advanced traffic management systems (ATMS) [
7]. ADAS, ATIS, and ATMS help ITS-Ss to communicate with each other, in order to provide road safety, traffic efficiency, and comfort as shown in
Figure 2. ADAS applications include cooperative collision warning, slow vehicle indications, lane change messages, speed control, reverse parking assistance, and intersection collision warnings. Similarly, ATIS applications include public transport information, trip reservation, route planning, internet booking, local electronic commerce, and trip matching services. While ATMS applications include dynamic route information, dynamic lane assignment, hazardous location, deterioration detection, and incident detection.
The most important component of ITS dissemination formation is ITS-S, as depicted in
Figure 3. ITS-S consists of vehicles, road side units (RSUs) and servers. There is an on-board unit (OBU) in each ITS-S (vehicle). The OBU enables an ITS-S (vehicle) to communicate with other ITS-Ss (vehicles or RSUs). According to the European Telecommunication Standards Institute (ETSI) [
8] ITS-S architecture as shown in
Figure 4, consists of facilities layer, networking and transport layer and the access layer. ITS-S facilities layer resemble application, presentation, and session layers of the OSI model. Similarly, ITS-S networking and transport layers show a resemblance of transport and network layers of the OSI model. ITS-S access layer provides the capabilities of data link and physical layers of the OSI model with improvement to ITS.
To enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communication (known as ‘V2X’), dedicated short range communication (DSRC) is used [
9]. DSRC provides communication range from 100 to 1000 m, with the data communication rate of around 27 Mbps [
10]. DSRC is known as wireless access in vehicular environment (WAVE), also called IEEE 802.11P standard [
11,
12,
13]. DSRC requires low latency and high data rate to support short distance communication [
14]. In ITS, DSRC is based on the access layer as discussed in IEEE 802.11P standard. Spectrum allocation for DSRC is from 5.85 GHz to 5.925 GHz as specified by United States (US) Federal Communication Commission (FCC) and European Electronic Communications Committee (ECC). Institute of Electrical and Electronics Engineers (IEEE) and ETSI segmented DSRC band into seven different channels each of 10 MHz. Among the seven channels, there is one control channel and six are service channels. The service channels are used for data transmission while the control channel is used for setting the services and applications strived on service channels.
In order to provide the services for resource management, security, networking, multichannel operations and single channel operations, IEEE has advised the standards for WAVE. WAVE IEEE standard adds the functionalities of IEEE 802.11P and IEEE 1609.x protocol stack [
15,
16,
17,
18,
19].
As shown in
Figure 4, in order to use the wireless medium in ITS, IEEE advised, IEEE WAVE also called IEEE 1609.x protocol stack [
19]. IEEE 1609.1, IEEE 1609.2, IEEE 1609.3, and IEEE 1609.4 (1609.x) define the architecture, transmission framework, management, security and access in ITS. In Europe, IEEE WAVE is called ITS-G5. IEEE 1609.1 defines beacon format and storage of beacons by facilities layer. IEEE 1609.2 standard defines secure beacons format for DSRC. IEEE 1609.2 determines techniques to secure messages. It specifies the processes of how ITS-Ss (vehicles) performed security assistance, such as confidentiality, authentication, integrity, access control, and non-repudiation. IEEE 1609.3 specifies WAVE Short Message (WSM) and its related protocol WAVE Short Message Protocol (WSMP) to ensure the services of the networking and transport layer related to safety applications. It also specifies WAVE Service Advertisement (WSA) message. WSA message is used in a given area to advertise the accessibility of DSRC services like a WSA can be broadcasted by an ITS-S (RSU) to advertise the presence of media downloading service. IEEE 1609.4 standard discusses the management and usage of DSRC channels.
ITS can be differentiated from mobile ad hoc network (MANET) [
20] in terms of its unique characteristics. The unique characteristics are: (a) dynamic topology, (b) high speed, (c) vehicles mobility is restricted to fixed roads/maps, (d) sparse and dense scenarios, (e) vehicle privacy, and (f) unlimited storage and power.
In ITS, every vehicle generates beacons regarding its current position, heading, speed, and road condition. However, there are also malicious vehicles and their aim is to damage the network. Malicious vehicles can misguide the honest vehicles. Checking the reliability of beacons is a challenge in ITS. There should be trustworthy techniques to verify the originality of beacons. Reliable security frameworks should be designed and developed to achieve the ITS objectives. If there is no proper security and privacy approaches, attackers may misguide or track vehicles to get malicious benefits. In order to provide a safe and efficient environment for ITS, first, the security and privacy challenges must be addressed.
In ITS, the main issues are due to the following reasons:
Dynamic speed and topology: As the nature of ITS is ad hoc. There is no fixed topology. The speed of vehicles is changing, with respect to time. The beacon generation and verification should be done in minimum time, otherwise, there may be congestion and accidents [
21].
Sparse and dense scenarios: In the sparse scenario, inter-vehicle distance is large. While in the dense scenario, the numbers of vehicles are more with reduced distances. Thus, verification of more beacons in the dense scenario is difficult as compared to the sparse scenario. There should be smart security and privacy approaches that work efficiently in both sparse and dense scenarios [
22].
Bandwidth limitation: The problem of bandwidth limitation arises if there are more vehicles (dense scenarios) [
23]. This problem may cause communication interference, delay, and affects the delivery ratio. Well-established security approaches need to be developed in order to address this issue.
Decentralization: Due to the ad hoc nature of ITS, there is no fixed central system that ensures trustworthy communication of vehicles. As different vehicles are joining and leaving the VANET [
5]. There is a need to focus on the designing of trustworthy security approaches to work reliably under decentralized scenario.
Malicious attackers: Due to the wireless and ad hoc nature of ITS, attackers try to inject bogus beacons or alter the attacked beacons [
24]. The attacker tries to misguide honest vehicles for their personal interest.
In ITS, a lot of research work is done to consider security and privacy issues. Andrea et al. [
25] discussed the security susceptibility and threats in ITS. There are security and privacy-related challenges from the perspective of applications, network and technologies. Niu et al., [
26] discussed only the issues of integrity and access control but did not elaborate the various security and privacy mechanisms. Qu et al., [
27] present a survey on the security and privacy issues of ITS, but it lacks proper analysis of the security and privacy approaches. Similarly, Lin et al., [
24] present a survey and discuss security and privacy approaches but it lacks proper analysis for different types of attacks on ITS communication layers, scalability, and computational cost. Engoulou et al., [
28] specified security and privacy requirements in ITS but do not properly analyze the security and privacy techniques for ITS suitability.
Petit et al., [
29] provide an excellent survey on pseudonyms schemes in ITS but consider only limited types of attacks. There is a lack of the individual technique proper analysis in each group. Similarly, a survey presented in [
30] is an excellent survey on pseudonym changing mechanisms to protect location privacy but lacks analysis of each technique in every privacy category of ITS with respect to latency, computational cost, communication overhead, and different types of attacks as discussed in
Section 2 of this paper. A number of surveys have been conducted for the security and privacy challenges in ITS. However, still there is a need to present an extensive survey of ITS security and privacy to assist researchers in the emerging area of ITS. This paper discusses the security and privacy challenges in ITS and provides analysis of security and privacy approaches in terms of different types of attacks on ITS communication layers, scalability, computational cost, communication overhead, and latency. The contributions of this paper are:
The ITS security and privacy challenges are reviewed and presented.
Different types of security and privacy attacks in ITS are analyzed and discussed.
Privacy schemes in ITS are examined and categorized based on scalability, latency, computational cost, communication overhead, security, and privacy attacks.
New research challenges in ITS security and privacy are presented.
A discussion towards the integration of ITS in the cloud is presented.
The rest of this paper is organized as follows:
Section 2 consists of ITS security and privacy challenges.
Section 3 consists of the categorization of privacy mechanisms in ITS.
Section 4 presents the group/ring signature-based schemes.
Section 5 consists of the pseudonym-based approaches.
Section 6 presents hybrid schemes.
Section 7 discusses the integration of ITS in the cloud. While
Section 8 presents a conclusion and future direction.
2. ITS Security and Privacy Challenges
In ITS, security and privacy are the most ambitious problems and privacy should be examined along with security [
27]. Every member of ITS should be authenticated. Similarly, every beacon should be verified to reduce the risk of security and privacy attacks in ITS. ITS-S (vehicle) privacy ensures the protection of the ITS user location and real identity. Security and privacy needs are satisfied through fictitious identities [
29]. The nature of ITS is that it is wireless, with high speed mobility, dynamic topology, sparse and dense scenarios and is susceptible to attacks when segregating with other ICT based networks. In ITS, vehicles broadcast messages to inform other vehicles about the traffic situations, however, malicious vehicles might broadcast bogus messages or alter the original messages of a legitimate ITS user. The aim of ITS cannot be achieved and honest ITS users can be misguided. An adversary can misguide or eavesdrop honest ITS user’s data for his/her personal interest. Therefore, there should be proper mechanisms to ensure the authenticity and integrity of messages [
31]. If an ITS-S (vehicle) is found guilty, it should be revoked from ITS. There should be proper security and privacy approaches for registration and revocation of vehicles. Blossl et al. [
32], discussed the issue of scrambler attacks on location privacy of vehicles/drivers. Usage of predictable scramblers cannot protect location privacy of vehicles. The scrambler (change signals) component of all IEEE 802.11p and Wi-Fi radio transceivers cannot guarantee the performance at the lower physical layer and needs to improve the performance of wireless communication. There is also a need to incorporate strong cryptographic techniques.
Eckhoff et al., [
33] proposed a scheme to protect user privacy in which a user, as well as authority, cannot track a vehicle. However, the mechanism is not at par with ITS system because there is no consideration for revocation and accountability of malicious vehicles. Security and privacy issues are mainly categorized as features, attacks, and challenges as shown in
Figure 5. These issues are given in detail as follows:
According to the ETSI, the communication architecture of an ITS-S consists of an access layer, networking and transport layer, and facilities layer [
8]. In ITS, the facilities layer is constituted via obtaining the performance of data usages in the network and transport layer. In the facilities layer, security provocation can be judged by the provocation in the access and networking and transport layers.
- (1)
Access layer: The main objective of an access layer in ITS is to transmit and receive messages. The security challenges in this layer are:
- (i)
Node capture attack: In this type of attack, an opponent can get and hold the node i.e., ITS-S (vehicle or RSU) in ITS via meddling with the OBU of the vehicle [
42]. If an ITS-S (vehicle or RSU) is paced by the node capture attack, the key information can be exhibited to the opponent. The attacker can easily copy the key information of the attacked node/ITS-S. In this way, the malicious vehicle can easily become an authorized vehicle to connect into the ITS. The node capture attack is considered as the node replication attack. In order to prevent the node capture attack, capable security and privacy approaches are needed [
43].
- (ii)
Malicious code injection attacks: The malicious code injection attacks [
44], can easily grant permission of an opponent into ITS. In order to preserve from malicious code injection attacks, the designing of capable code authentication approaches is required [
44,
45].
- (iii)
False data injection attacks: Yang et al., [
35], discussed that with node captured attack, the opponent can easily insert the wrong information. In this way, the receiving vehicles are misguided, which affects the ITS. In order to identify false data, proper security schemes need to be designed [
46].
- (iv)
Replay attacks: Replay attacks are also called freshness attacks [
47,
48], in this type of attack, an opponent can use an attached ITS-S to send messages with legal evidence. Authentication processes are commonly affected through replay attacks. To overcome the replay attack effect, proper time stamp approaches must be developed in ITS [
49].
- (v)
Cryptanalysis and side-channel attacks: In this type of attack, an eavesdropper tries to get key information from the obtained cipher text [
50]. However, if strong security and privacy techniques are used, the chances of cryptanalysis attack are less. Similarly, the opponent can launch aside-channel attack, the opponent can use some mechanisms on the devices (e.g., RSUs) in ITS and try to get the cipher key information. In order to relieve the side-channel attacks, effective security and key management approaches are required in ITS [
34].
- (vi)
Interference and eavesdropping: As the nature of ITS is wireless, if there are no security measures the communication can be monitored easily by unauthorized parties [
42,
51]. To relieve ITS from eavesdropping, proper security approaches are needed. Noise data can be sent by the adversary to impede with the distributed information in wireless communication. In order to guarantee the timely and accurate delivery of information in ITS, effective security and privacy approaches are needed to avoid the interference by unauthorized users [
52].
- (2)
Networking and Transport Layer: The primary function of the networking and transport layer in ITS, is to transmit data between ITS-Ss. In the network and transport layer security threats target on the smashup of the accessibility of the network stocks. Due to the wireless nature of ITS, security threats in this layer are crucial. Network and transport layer attacks in ITS are as follows:
- (i)
Denial of service (DoS) attacks: Due to DoS attacks [
53], all the resources of ITS are exhausted with desperate flux. As a result, honest ITS-S cannot receive the service. In order to relieve from DoS attacks, effective ITS schemes should be designed to address DoS attacks [
36].
- (ii)
Spoofing attacks: The main objective of spoofing attack [
25,
54] is to gain complete access to ITS. After keeping the full access to the ITS, adversary sends bogus beacons. To defend against spoofing attacks, effective security techniques are needed to focus on proper authentication [
37,
55].
- (iii)
Sinkhole attacks: In sinkhole attacks [
56], the attacked ITS-S, arrogates prodigious capabilities of key generation and communication. This will attract other vehicles to communicate through the particular ITS-S (RSU), thus disrupting the ITS. To relieve the ITS from sinkhole attacks [
57], proper security routing approaches are needed.
- (iv)
Wormhole attacks: Wormhole attacks [
58] are launched by two petty ITS-Ss, in ITS to transfer beacons with secure links in order to claim a fake single node communication interpolate them [
58]. Due to wormhole attacks, forwarding nodes (ITS-Ss) are decreased. Now maximum messages are delivering through malicious ITS-Ss. As a result, honest vehicles can be misguided. To defend the ITS against wormhole attacks, proper authentication approaches are needed.
- (v)
Man in the middle attack (MIMA): In MIMA [
59], a malicious ITS-S (vehicle) is controlled by an opponent is placed virtually among other ITS-Ss (vehicles and RSUs). Malicious ITS-S is a middle node between honest ITS-Ss, can record all the communication of the honest vehicles. This type of attack breaks the privacy, confidentiality, and integrity of vehicles by eavesdropping, modification, and full access to the communication between honest ITS-Ss. Secure and reliable communication approaches which can guarantee the authentication of uncompromised ITS-Ss can be an effective mechanism to MIMA [
34,
36].
- (vi)
Sybil Attacks: In Sybil attacks [
25,
60], a malicious vehicle can arrogate many real identities and imitate them in the ITS. Due to these attacks, a malicious vehicle can have many real identities. An honest ITS user cannot distinguish fake messages transmitted by the malicious vehicle. As a result, honest vehicles are misguided. In order to protect an ITS from Sybil attacks, proper authentication and identification secure approaches are needed to be developed [
37].
- (3)
Facilities layer: User-requested services are provided by the facilities layer. Thus, security threats at the facilities layer are a center on services attacks. Here in ITS, many applicants inquiring in the facilities layer are discussed as follows:
- (i)
Phishing attack: In phishing attacks [
25,
61], an opponent can get ITS user private data such as identities through spoofing. In ITS robust secure mechanisms for pseudonym generation, acquiring and communication can relieve from phishing attacks.
- (ii)
Malicious virus/worms: Another threat to ITS, is malicious worms or virus [
25,
55,
62]. An opponent can send virus along with beacons to infect the ITS with malicious self-spreading interventions. As a result, an adversary can get or modify private data of honest ITS user. For proper authentication, integrity check approaches are needed to relieve this type of attack [
63].
- (iii)
Malicious script: Malicious script [
25] in ITS, is inserted into application/software’s to damage the system. As some ITS applications, like infotainment, point of interest notification, insurance etc. are linked with the internet. By executing the script, malicious scripts like the active-x script, java applets etc. the opponent can quickly victimize an honest ITS-S. Malicious scripts obtained through internet service, can stiff the outflow of private information or flush the ITS. To provide reliable protection for vehicles, proper mechanisms are required to validate the services through the internet.
Like security, one of the key human rights is privacy that needs to be preserved. United Nations (UN) human rights universal statement, introduced in 1948 article 12, says that: “No one shall be subjected to arbitrary interference with his privacy, family, home or correspondence, nor to attacks upon his honor and reputation. Everyone has the right to the protection of the law against such interference or attacks” [
64].
Privacy of a user in ITS is a crucial issue [
38]. The privacy issue in ITS can implicate vehicle loss, life threat and other damages, like stealing at home or office. In ITS, communication authenticity is achieved through identity. However, if real identities are used, the adversary can track the user path (e.g., start and end location of driving). Thus, an adversary can collect the daily routine information of a user. If the opponent gets ITS user confidential information, he/she can derive the schedule of the user. For example, at which time the user will be at home or their office or anywhere. By keeping this information, an opponent can charge fraud/theft or even endanger a user’s life. Therefore, privacy preserving techniques are needed to develop, in order to ensure that private information of ITS user cannot be a leak to an adversary. In order to provide privacy for ITS-S, privacy related techniques are divided into: privacy preservation based on anonymity [
65], privacy preservation based on encryption [
66], and privacy preservation based on perturbation [
67,
68,
69].
Qiu et al., [
70] discussed that there are many techniques to preserve privacy-based anonymity—like T-closeness, L-diversity, and K-anonymity etc.—to preserve the real identities. However, anonymous communication can be affected through traffic analysis [
71,
72,
73]. Privacy preservation based on encryption using encryption techniques (e.g., zero-knowledge proof, secret sharing, homomorphism encryption etc.) can be used to guarantee that actual information related to the vehicle cannot be leaked by eavesdroppers [
66]. However, encryption-based approaches only ensure confidentiality of data, not the privacy of the vehicles.
Similarly, privacy preservation based on perturbation approaches—like information sharing, information customization, etc.—changes the order of information being sent to achieve privacy preservation [
67]. However, by using perturbation techniques, revocation in ITS cannot be achieved efficiently with respect to time. Therefore, the application of privacy preservation based on perturbation cannot be considered in ITS. Thus privacy preservation techniques along with confidentiality in ITS are still a great challenge.
4. Group/Ring Signature Based Privacy Schemes
In order to provide anonymity and secure communication between V2X, as debated in the previous sections of this paper, there is a need to develop effective security and privacy mechanisms that address the issues of security and privacy efficiently. In ITS, a GSB approach is proposed by Guo et al. [
74] that suggests the use of group signature to provide unlinkability of messages generated by the same user. Only the group manager can reveal the privacy because the group manager has all the ITS users information and thus a single point of security risk. Zhu el al. [
75] proposed that the privacy of an ITS user can be achieved through group signature. The asymmetric cryptography can be used in group signature. The group members have their private keys and the group asymmetric key. The private key is used to produce signatures and send messages. To verify the signatures with messages at the receiving vehicle, the group asymmetric key is used. The real identity of an ITS user can be exposed only to the group manager. A modified form of short group signature that uses batch verification proposed in [
76]. However, the approach produces high computational and communication overheads. A decentralized approach of group signature is proposed by Zhang et al. [
77], in which RSU acts as a manager of the small group. However, it is prone to side-channel attack.
Lin et al. [
78] discussed a technique based on the group signature and identity-based signature. The technique combined short group signature and identity-based signature to provide anonymity. The main disadvantage of this technique is RSU participation in signature generation and verification, as there are side-channel attacks.
Huang et al., [
79], discussed a technique of group verification by using elliptic curve cryptography (ECC) to minimize signature verification and communication overheads. However, the technique is prone to DoS attack. In order to minimize the computational time in verification of group signatures through RSUs, Zhang et al., [
80] presented a technique which uses pseudonyms to achieve anonymity of ITS user. However, RSUs are located in open infrastructure and can easily be targeted by the adversaries. Similarly, the scheme suggested by Zhang et al., [
80] is prone to DoS attacks, because bogus messages can easily be injected. Similarly, the mechanism presented in [
81], improve the shortcomings of anonymity through pseudonyms. However, the mechanism is prone to Sybil and replay attacks.
Hao et al., [
82] suggested Cooperative Message Authentication Protocol (CMAP) by using a short group signature approach. CMAP reduced computational and transmission costs, but the property of non-repudiation is not achieved. Furthermore, a group of vehicles can only verify the authenticity of the messages, while other vehicles just accept the messages on behalf of the verifier group. However, if any member of the verifier group is impersonated, the overall security of ITS is put at risk. To reduce the computational and communication overheads in GSB schemes, Lin et al., [
83] presented an approach based on group authentication. The technique presented in [
83], reduced computational and transmission costs, but is prone to DoS attacks and is also not scalable.
In summary, some group signature schemes incur high computational overhead and medium security, while in some schemes computational overhead is low but security is also low. The performance, security, and privacy analysis of GSB/RSB approaches are shown in
Table 1,
Table 2 and
Table 3, respectively.
6. Hybrid Privacy Schemes
Hybrid privacy schemes are the combination of the GSB and pseudonym-based schemes to provide a reliable framework for ITS. Calandriello et al. [
107], presented a hybrid security technique by combining standard pseudonym and group signature-based approach to induce self pseudonyms. The technique presented in [
107], minimizes the computational overhead but introduces the problem of maintaining a large CRL and timely sharing of CRL to vehicles. Furthermore, self-generated pseudonyms introduce the problem of Sybil attacks. Another hybrid security approach is authentication with multiple levels of anonymity (AMLA) discussed by Bharadiya et al. [
108]. The AMLA reduces computational and transmission costs but is prone to identity leaks, replay, and DoS attacks. Hence the security of AMLA is low and does not provide strong anonymity.
Wagan et al. [
109] presented a hybrid approach, in which a group captain is selected on the basis of the same direction traveling. However, how a group captain is selected has not been properly addressed. Similarly, there are chances of malicious activities as no proper revocation mechanism for malicious vehicles are discussed. The approach [
109] is time consuming because of the processes of computing keys, random numbers, and hashes are performed at the same time besides verification of hashes. The scheme is not scalable and provides low security.
Khodaei et al. [
110] presented a hybrid scheme called RHyTHM. The scheme [
110] suggested that the group manager allows a vehicle to sign a safety beacon in lieu of the class. If a vehicle runs out of pseudonyms, the vehicle executes a RHyTHM protocol, in which RHyTHM flag is sent in the message to the class. The outdated vehicle then uses self-generated pseudonyms for communication. However, there is the possibility of malicious attacks, in the case of self-generated pseudonyms. The approach has a high computational overhead in case of ITS. Similarly, the average latency and communication overhead is also high. In order to ensure that only trustworthy vehicles are tabbed for the relay is still a great challenge. Hu et al. [
111] proposed a hybrid approach called privacy preserving trust basedrelay scheme (PTRS). The scheme suggested that there should be a trust/reputation value that ensures the trustworthiness of a relayed node. Trust authority (TA) is the sole entity of all information on vehicles and is a single point of attack. TA decides the trust level. However, the scheme is prone to replay attack. Furthermore, the computational and communication overheads are high. The vehicle can choose another vehicle for a relay that is to transmit messages. However, due to misreporting/obfuscation, a malicious vehicle can be selected as a relay.
In order to sum up the hybrid privacy approaches performance,
Table 10,
Table 11 and
Table 12 show the performance, security, and privacy analysis, respectively.
7. Integration of ITS in Cloud
ITS can be integrated with the cloud to form the Internet of ITS-Ss [
112]. Using the Internet of Things (IoT) technology in ITS forms Internet of ITS-Ss (IoITS-Ss) to achieve the applications of IoT in ITS. ITS is different from early networks as it has the characteristics of high speed, sparse and dense scenarios, point of interest spots, dynamic topology, security, location and identity privacy. As ITS-Ss (vehicles) on the internet of ITS-Ss are vulnerable to different types of security and privacy attacks from the perspective of global, local, passive, active attacks in the access layer, networking, and transport layer and facilities layer as discussed in
Section 2 of this paper. The aim of IoITS-Ss is to gain infotainment services or other services through the Internet. Infotainment services include media downloading, electronic commerce, insurance, real time traffic analysis, parking guidance, and other point of interest services. As shown in
Figure 3, the dissemination architecture of ITS, the internet/cloud services are accessed through 3G/4G/5G technology.
The main aim of IoITS-Ss is to provide convenience for ITS users. After connection of ITS with cloud provides more enhanced features like online traffic guidance [
113]. ITS can be seen as a type of IoT. IoITS-Ss work well if the distances between ITS-Ss (vehicles) are large. DSRC provides communication range up to 1000 m. In scenarios where the number of vehicles are less, providing internet services is a great challenge for ITS. This will affect the typical applications of ITS, which are road safety, traffic efficiency, and comfort. In IoITS-Ss security and privacy is a great challenge, because of transportation crashes by untrue contents from IoITS-Ss heads straight to accidents, kidnapping, and cost of family living. Also, people want to keep their driving private. However, IoITS-Ss cloud takes ITS-Ss information and thus vehicles privacy can be leaked. If vehicles use the cloud more and more, the security and privacy are at great risk. In IoITS-Ss a part of information can be live and a part of information can be private to protect the privacy of vehicles. Cloud security and privacy in IoITS-Ss ensure vehicles security and privacy. According to [
114,
115,
116,
117], the following types of security and privacy attacks in IoITS-Ss—i.e., snooping, status spoofing, information altering, DoS, repudiation, obstruct, intervention, etc.—as discussed in
Section 2 of this paper demise the performance, strength, vigor, privacy, and security. Scalable and trustworthy security and privacy techniques should be designed to address the issues of different types of attacks as discussed in
Section 2 of this paper.