Mono- and Bi-Molecular Adsorption of SF6 Decomposition Products on Pt Doped Graphene: A First-Principles Investigation
Abstract
:1. Introduction
2. Method
3. Results and Discussion
3.1. Structure of SF6 Decomposition Products and Pt-Graphene
3.2. Adsorption of Single Molecule, Double Molecules on Pt-Graphene
3.2.1. Analysis of Adsorption Structures and Electronic Properties
3.2.2. Analysis of Electronic Density of States
3.2.3. Analysis of Frontier Molecular Orbital
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chu, F.Y. SF6 decomposition in gas-insulated equipment. IEEE Trans. Electr. Insul. 1986, EI-21, 693–725. [Google Scholar] [CrossRef]
- Xie, Q.; Cheng, S.; Lü, F.; Li, Y. Location of partial discharge in transformer oil using circular array of ultrasonic sensors. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1683–1690. [Google Scholar] [CrossRef]
- Liu, Y.W.; Wu, L.Y.; Gong, Y.P. Investigation on SF6 Decomposition Products in GIS and Affecting Factors. Power Syst. Technol. 2009, 5, 015. [Google Scholar]
- Okabe, S.; Kaneko, S.; Minagawa, T.; Nishida, C. Detecting characteristics of SF6 decomposed gas sensor for insulation diagnosis on gas insulated switchgears. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 251–258. [Google Scholar] [CrossRef]
- Tang, J.; Liu, F.; Zhang, X.; Meng, Q.; Zhou, J. Partial discharge recognition through an analysis of SF6 decomposition products part 1: Decomposition characteristics of SF6 under four different partial discharges. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 29–36. [Google Scholar] [CrossRef]
- Tang, J.; Liu, F.; Meng, Q.; Zhang, X.; Tao, J. Partial discharge recognition through an analysis of SF6 decomposition products part 2: Feature extraction and decision tree-based pattern recognition. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 37–44. [Google Scholar] [CrossRef]
- Sun, P.; Wang, K.; Zhu, H. Recent Developments in Graphene-Based Membranes: Structure, Mass-Transport Mechanism and Potential Applications. Adv. Mater. 2016, 28, 2287–2310. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, F.; Liu, K. Research Progress in Gas Sensitivity of Graphene. Mater. Rev. 2012, S2, 39–43. [Google Scholar]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, J.; Wang, X.; Wang, D.; Yang, A.; Lv, P.; Wu, Y.; Rong, M.; Gao, L. Highly selective detection of sulfur hexafluoride decomposition components H2S and SOF2 employing sensors based on tin oxide modified reduced graphene oxide. Carbon 2018, 135, 95–103. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Chen, Y.B.; Zhou, K.G.; Liu, C.H.; Zeng, J.; Zhang, H.L.; Peng, Y. Improving gas sensing properties of graphene by introducing dopants and defects: A first-principles study. Nanotechnology 2009, 20, 185504. [Google Scholar] [CrossRef] [PubMed]
- Beheshtian, J.; Peyghan, A.A.; Noei, M. Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sens. Actuators B Chem. 2013, 181, 829–834. [Google Scholar] [CrossRef]
- Xiao, H.; Shi, X.; Zhang, Y.; Li, M.; Liao, X.; Chen, X. Predicting a two-dimensional P2S3 monolayer: A global minimum structure. Comput. Mater. Sci. 2018, 155, 288–292. [Google Scholar] [CrossRef]
- Xiao, H.; Shi, X.; Liao, X.; Zhang, Y.; Chen, X. Prediction of a two-dimensional S3N2 solid for optoelectronic applications. Phys. Rev. Mater. 2018, 2, 024002. [Google Scholar] [CrossRef]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Z.; Shen, Z.; Chen, W.; Ma, D.; Dai, X. Adsorption sensitivity of metal atom decorated bilayer graphene toward toxic gas molecules (CO, NO, SO2 and HCN). Sens. Actuators B Chem. 2017, 238, 182–195. [Google Scholar] [CrossRef]
- Shokuhi Rad, A. DFT study of nitrous oxide adsorption on the surface of Pt-decorated graphene. Phys. Chem. Res. 2016, 4, 619–626. [Google Scholar]
- Rad, A.S.; Abedini, E. Chemisorption of NO on Pt-decorated graphene as modified nanostructure media: A first principles study. Appl. Surf. Sci. 2016, 360, 1041–1046. [Google Scholar] [CrossRef]
- Rad, A.S. Adsorption of C2H2 and C2H4 on Pt-decorated graphene nanostructure: Ab-initio study. Synth. Met. 2016, 211, 115–120. [Google Scholar] [CrossRef]
- Rad, A.S. Density functional theory study of the adsorption of MeOH and EtOH on the surface of Pt-decorated graphene. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 83, 135–140. [Google Scholar] [CrossRef]
- Rad, A.S.; Zareyee, D. Adsorption properties of SO2 and O3 molecules on Pt-decorated graphene: A theoretical study. Vacuum 2016, 130, 113–118. [Google Scholar]
- Chen, D.; Zhang, X.; Tang, J.; Fang, J.; Li, Y.; Liu, H. Adsorption and dissociation mechanism of SO2 and H2S on Pt decorated graphene: A DFT-D3 study. Appl. Phys. A 2018, 124, 404. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, A.; Wang, X.; Murphy, A.B.; Li, X.; Liu, D.; Wu, Y.; Rong, M. Theoretical study of the neutral decomposition of SF6 in the presence of H2O and O2 in discharges in power equipment. J. Phys. D Appl. Phys. 2016, 49, 385203. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Gui, Y.; Hu, W. First-principles study of SF6 decomposed gas adsorbed on Au-decorated graphene. Appl. Surf. Sci. 2016, 367, 259–269. [Google Scholar] [CrossRef]
- Del Castillo, R.M.; Sansores, L.E. Study of the electronic structure of Ag, Au, Pt and Pd clusters adsorption on graphene and their effect on conductivity. Eur. Phys. J. B 2015, 88, 248. [Google Scholar] [CrossRef]
System | Eads (eV) | QT1 (eV) | QT2 (eV) | D1 (Å) | D2 (Å) | Bond Length (Å) |
---|---|---|---|---|---|---|
SO2 | −1.358 | −0.412 | 2.261 | 1.581 (O1-S), 1.582 (O2-S) | ||
SOF2 | −1.254 | −0.679 | 2.012 | 2.966 (S-F1), 1.688 (S-F2), 1.550 (O-S) | ||
SO2F2 | −2.429 | −0.981 | 2.029 | 3.434 (S-F2), 1.727 (S-F1), 1.542 (O2-S), 1.542 (O1-S) | ||
2SO2 | −2.223 | −0.665 | 2.303 (Pt-O(front SO2)) | 2.256 (Pt-O(second SO2)) | 1.498 (O1-S), 1.561 (O2-S), 1.565 (O3-S), 1.561 (O4-S) | |
2SOF2 | −0.934 | −0.622 | 2.008 (Pt-F(right SOF2)) | 3.806 (Pt-F(left SOF2)) | 1.675 (S-F1), 1.670 (S-F2), 1.460 (O-S), | |
3.027 (S-F1), 1.801 (S-F2), 1.503 (O-S) | ||||||
2SO2F2 | −2.159 | −1.088 | 2.009 (Pt-F(left SO2F2) | 3.422 (Pt-F(right SO2F2)) | 2.343 (S-F1), 3.384 (S-F2), 1.492 (O1-S), 1.486 (O2-S) | |
1.606 (S-F3), 1.610 (S-F4), 1.441 (O3-S), 1.445 (O4-S) | ||||||
SO2&SOF2 | −1.431 | −0.321 (SO2) | 0.127 (SOF2) | 2.246 (Pt-O(SO2)) | 2.486 (Pt-S(SOF2)) | 1.501 (O1-S), 1.589 (O2-S) |
1.643 (S-F1), 1.661 (S-F2), 1.455 (O-S) | ||||||
SO2&SO2F2 | −2.198 | −0.039 (SO2) | −0.544 (SO2F2) | 3.983 (Pt-S(SO2)) | 2.011 (Pt-F(SO2F2)) | 1.480 (O1-S), 1.486 (O2-S) |
2.975 (S-F2), 1.763 (S-F1), 1.586 (O2-S), 1.483 (O1-S) | ||||||
SOF2&SO2F2 | −2.306 | −0.047 (SOF2) | −0.994 (SO2F2) | 4.143 (Pt-S(SOF2)) | 2.031 (Pt-F(SO2F2)) | 1.662 (S-F1), 1.688 (S-F2), 1.465 (O-S) |
3.143 (S-F2), 1.764 (S-F1), 1.585 (O2-S), 1.482 (O1-S) |
System | LUMO (eV) | HOMO (eV) | Eg (eV) |
---|---|---|---|
Pt-graphene | −3.798 | −4.229 | 0.489 |
Pt-graphene/SO2 | −4.105 | −4.706 | 0.601 |
Pt-graphene/SOF2 | −4.218 | −4.884 | 0.667 |
Pt-graphene/SO2F2 | −4.330 | −5.046 | 0.716 |
System | LUMO | HOMO | Eg (eV) |
---|---|---|---|
graphene | −3.798 | −4.229 | 0.489 |
Pt-graphene/SO2& SOF2 | −4.279 | −4.843 | 0.564 |
Pt-graphene/SO2& SO2F2 | −4.645 | −5.349 | 0.704 |
Pt-graphene/SOF2&SO2F2 | −4.607 | −5.314 | 0.706 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Song, S.; Chen, D.; Zhang, X. Mono- and Bi-Molecular Adsorption of SF6 Decomposition Products on Pt Doped Graphene: A First-Principles Investigation. Appl. Sci. 2018, 8, 2010. https://doi.org/10.3390/app8102010
Wu Y, Song S, Chen D, Zhang X. Mono- and Bi-Molecular Adsorption of SF6 Decomposition Products on Pt Doped Graphene: A First-Principles Investigation. Applied Sciences. 2018; 8(10):2010. https://doi.org/10.3390/app8102010
Chicago/Turabian StyleWu, Yongqian, Shaojian Song, Dachang Chen, and Xiaoxing Zhang. 2018. "Mono- and Bi-Molecular Adsorption of SF6 Decomposition Products on Pt Doped Graphene: A First-Principles Investigation" Applied Sciences 8, no. 10: 2010. https://doi.org/10.3390/app8102010
APA StyleWu, Y., Song, S., Chen, D., & Zhang, X. (2018). Mono- and Bi-Molecular Adsorption of SF6 Decomposition Products on Pt Doped Graphene: A First-Principles Investigation. Applied Sciences, 8(10), 2010. https://doi.org/10.3390/app8102010