Strain Induced Metal–Insulator Transition of Magnetic SrRuO3 Single Layer in SrRuO3/SrTiO3 Superlattice
Abstract
:1. Introduction
2. Method
3. Results
3.1. Bulk Properties of SRO
3.2. Monolayer SRO in SRO/STO Superlattice
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Kubota, H.; Fukushima, A.; Yakushiji, K.; Nagahama, T.; Yuasa, S.; Ando, K.; Maehara, H.; Nagamine, Y.; Tsunekawa, K.; Djayaprawira, D.D.; et al. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nat. Phys. 2007, 4, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.G.; Li, M.; Hageman, S.; Chien, C.L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 2011, 11, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Kurebayashi, H.; Wunderlich, J.; Vyborny, K.; Zarbo, L.P.; Campion, R.P.; Casiraghi, A.; Gallagher, B.L.; Jungwirth, T.; Ferguson, A.J. Spin-orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 2011, 6, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Sankey, J.C.; Cui, Y.-T.; Buhrman, R.A.; Ralph, D.C.; Sun, J.Z.; Slonczewski, J.C. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nat. Phys. 2007, 4, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Slonczewski, J.C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 1989, 39, 6995–7002. [Google Scholar] [CrossRef]
- Reyren, N.; Thiel, S.; Caviglia, A.D.; Kourkoutis, L.F.; Hammerl, G.; Richter, C.; Schneider, C.W.; Kopp, T.; Rüetschi, A.S.; Jaccard, D.; et al. Superconducting Interfaces Between Insulating Oxides. Science 2007, 317, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Ohtomo, A.; Hwang, H.Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 2004, 427, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.D.; Tsymbal, E.Y. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys. Rev. B 2009, 80, 174406. [Google Scholar] [CrossRef]
- Chen, H.; Qiao, Q.; Marshall, M.S.J.; Georgescu, A.B.; Gulec, A.; Phillips, P.J.; Klie, R.F.; Walker, F.J.; Ahn, C.H.; Ismail-Beigi, S. Reversible Modulation of Orbital Occupations via an Interface-Induced Polar State in Metallic Manganites. Nano Lett. 2014, 14, 4965–4970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; George, T.A.; Wang, Y.; Ketsman, I.; Burton, J.D.; Bark, C.-W.; Ryu, S.; Kim, D.J.; Wang, J.; Binek, C.; et al. Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces. Appl. Phys. Lett. 2012, 100, 232904. [Google Scholar] [CrossRef]
- Yu, P.; Lee, J.S.; Okamoto, S.; Rossell, M.D.; Huijben, M.; Yang, C.H.; He, Q.; Zhang, J.X.; Yang, S.Y.; Lee, M.J.; et al. Interface Ferromagnetism and Orbital Reconstruction in BiFeO3–La0.7Sr0.3MnO3 Heterostructures. Phys. Rev. Lett. 2010, 105, 027201. [Google Scholar] [CrossRef] [PubMed]
- Koster, G.; Klein, L.; Siemons, W.; Rijnders, G.; Dodge, J.S.; Eom, C.B.; Blank, D.H.A.; Beasley, M.R. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 2012, 84, 253–298. [Google Scholar] [CrossRef]
- Das, S.; Herklotz, A.; Pippel, E.; Guo, E.J.; Rata, D.; Dörr, K. Strain dependence of antiferromagnetic interface coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices. Phys. Rev. B 2015, 91, 134405. [Google Scholar] [CrossRef]
- Ke, X.; Belenky, L.J.; Lauter, V.; Ambaye, H.; Bark, C.W.; Eom, C.B.; Rzchowski, M.S. Spin Structure in an Interfacially Coupled Epitaxial Ferromagnetic Oxide Heterostructure. Phys. Rev. Lett. 2013, 110, 237201. [Google Scholar] [CrossRef] [PubMed]
- Ziese, M.; Bern, F.; Pippel, E.; Hesse, D.; Vrejoiu, I. Stabilization of Ferromagnetic Order in La0.7Sr0.3MnO3/SrRuO3 Superlattices. Nano Lett. 2012, 12, 4276–4281. [Google Scholar] [CrossRef] [PubMed]
- Nadgorny, B.; Osofsky, M.S.; Singh, D.J.; Woods, G.T.; Soulen, R.J.; Lee, M.K.; Bu, S.D.; Eom, C.B. Measurements of spin polarization of epitaxial SrRuO3 thin films. Appl. Phys. Lett. 2003, 82, 427–429. [Google Scholar] [CrossRef]
- Raychaudhuri, P.; Mackenzie, A.P.; Reiner, J.W.; Beasley, M.R. Transport spin polarization in SrRuO3 measured through point-contact Andreev reflection. Phys. Rev. B 2003, 67, 020411. [Google Scholar] [CrossRef]
- Sanders, J.; Woods, G.T.; Poddar, P.; Srikanth, H.; Dabrowski, B.; Kolesnik, S. Spin polarization measurements on polycrystalline strontium ruthenates using point-contact Andreev reflection. J. Appl. Phys. 2005, 97, 10C912. [Google Scholar] [CrossRef]
- Jeng, H.T.; Lin, S.H.; Hsue, C.S. Orbital Ordering and Jahn-Teller Distortion in Perovskite Ruthenate SrRuO3. Phys. Rev. Lett. 2006, 97, 067002. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Min, B.I. Nature of itinerant ferromagnetism of SrRuO3: A DFT+DMFT study. Phys. Rev. B 2015, 91, 205116. [Google Scholar] [CrossRef]
- Jeong, D.W.; Choi, H.C.; Kim, C.H.; Chang, S.H.; Sohn, C.H.; Park, H.J.; Kang, T.D.; Cho, D.Y.; Baek, S.H.; Eom, C.B.; et al. Temperature Evolution of Itinerant Ferromagnetism in SrRuO3 Probed by Optical Spectroscopy. Phys. Rev. Lett. 2013, 110, 247202. [Google Scholar] [CrossRef] [PubMed]
- Kostic, P.; Okada, Y.; Collins, N.C.; Schlesinger, Z.; Reiner, J.W.; Klein, L.; Kapitulnik, A.; Geballe, T.H.; Beasley, M.R. Non-Fermi-Liquid Behavior of SrRuO3: Evidence from Infrared Conductivity. Phys. Rev. Lett. 1998, 81, 2498–2501. [Google Scholar] [CrossRef]
- Laad, M.S.; Müller-Hartmann, E. Origin of the Non-Fermi Liquid Behavior of SrRuO3. Phys. Rev. Lett. 2001, 87, 246402. [Google Scholar] [CrossRef] [PubMed]
- Verissimo-Alves, M.; García-Fernández, P.; Bilc, D.I.; Ghosez, P.; Junquera, J. Highly Confined Spin-Polarized Two-Dimensional Electron Gas in SrTiO3/SrRuO3 Superlattices. Phys. Rev. Lett. 2012, 108, 107003. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Qiu, X.; Su, D.; Zhou, S.; Li, A.; Wu, D. Thickness-dependent metal–insulator transition in epitaxial SrRuO3 ultrathin films. J. Appl. Phys. 2015, 117, 015307. [Google Scholar] [CrossRef]
- Chang, Y.J.; Kim, C.H.; Phark, S.H.; Kim, Y.S.; Yu, J.; Noh, T.W. Fundamental Thickness Limit of Itinerant Ferromagnetic SrRuO3 Thin Films. Phys. Rev. Lett. 2009, 103, 057201. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Mandal, B.; Mahadevan, P. Strain-induced metal–insulator transition in ultrathin films of SrRuO3. Phys. Rev. B 2014, 90, 125109. [Google Scholar] [CrossRef]
- Si, L.; Zhong, Z.; Tomczak, J.M.; Held, K. Route to room-temperature ferromagnetic ultrathin SrRuO3 films. Phys. Rev. B 2015, 92, 041108. [Google Scholar] [CrossRef]
- Garanin, D.A. Self-consistent Gaussian approximation for classical spin systems: Thermodynamics. Phys. Rev. B 1996, 53, 11593–11605. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.F.L.; Fan, W.J.; Chureemart, P.; Ostler, T.A.; Ellis, M.O.A.; Chantrell, R.W. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 2014, 26, 103202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980, 45, 566. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Liechtenstein, A.I.; Anisimov, V.I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 1995, 52, R5467. [Google Scholar] [CrossRef]
- Pavarini, E.; Biermann, S.; Poteryaev, A.; Lichtenstein, A.I.; Georges, A.; Andersen, O.K. Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d1 Perovskites. Phys. Rev. Lett. 2004, 92, 176403. [Google Scholar] [CrossRef] [PubMed]
- Kinaci, A.; Sevik, C.; Çağ ın, T. Electronic transport properties of SrTiO3 and its alloys: Sr1−xLaxTiO3 and SrTi1−xMxO3 (M = Nb, Ta). Phys. Rev. B 2010, 82, 155114. [Google Scholar] [CrossRef]
- Solovyev, I.; Hamada, N.; Terakura, K. t2g versus all 3d localization in LaMO3 perovskites (M=Ti–Cu): First-principles study. Phys. Rev. B 1996, 53, 7158–7170. [Google Scholar] [CrossRef]
- Pentcheva, R.; Pickett, W.E. Ionic relaxation contribution to the electronic reconstruction at the n-type LaAlO3/SrTiO3 interface. Phys. Rev. B 2008, 78, 205106. [Google Scholar] [CrossRef]
- Ryee, S.; Jang, S.W.; Kino, H.; Kotani, T.; Han, M.J. Quasiparticle self-consistent GW calculation of Sr2RuO4 and SrRuO3. Phys. Rev. B 2016, 93, 075125. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- El-Mellouhi, F.; Brothers, E.N.; Lucero, M.J.; Bulik, I.W.; Scuseria, G.E. Structural phase transitions of the metal oxide perovskites SrTiO3, LaAlO3, and LaTiO3 studied with a screened hybrid functional. Phys. Rev. B 2013, 87, 035107. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.Y.; Park, B.G.; Oh, S.J. Photoemission and x-ray absorption study of the electronic structure of SrRu1−xTixO3. Phys. Rev. B 2006, 73, 235109. [Google Scholar] [CrossRef]
- Kim, K.W.; Lee, J.S.; Noh, T.W.; Lee, S.R.; Char, K. Metal–insulator transition in a disordered and correlated SrTi1−xRuxO3 system: Changes in transport properties, optical spectra, and electronic structure. Phys. Rev. B 2005, 71, 125104. [Google Scholar] [CrossRef]
- Lin, P.A.; Jeng, H.T.; Hsue, C.S. Electronic structure and orbital ordering of SrRu1−xTixO3: GGA + U investigations. Phys. Rev. B 2008, 77, 085118. [Google Scholar] [CrossRef]
- Herklotz, A.; Kataja, M.; Nenkov, K.; Biegalski, M.D.; Christen, H.M.; Deneke, C.; Schultz, L.; Dörr, K. Magnetism of the tensile-strain-induced tetragonal state of SrRuO3 films. Phys. Rev. B 2013, 88, 144412. [Google Scholar] [CrossRef]
- Wang, X.W.; Wang, X.; Zhang, Y.Q.; Zhu, Y.L.; Wang, Z.J.; Zhang, Z.D. Magnetic anisotropy and metal–insulator transition in SrRuO3 thin films at different growth temperatures. J. Appl. Phys. 2010, 107, 113925. [Google Scholar] [CrossRef]
- Bern, F.; Ziese, M.; Setzer, A.; Pippel, E.; Hesse, D.; Vrejoiu, I. Structural, magnetic and electrical properties of SrRuO3 films and SrRuO3/SrTiO3 superlattices. J. Phys. Condens. Matter 2013, 25, 496003. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, A.; Hung, S.-H.; Jeng, H.-T. Strain Induced Metal–Insulator Transition of Magnetic SrRuO3 Single Layer in SrRuO3/SrTiO3 Superlattice. Appl. Sci. 2018, 8, 2151. https://doi.org/10.3390/app8112151
Huang A, Hung S-H, Jeng H-T. Strain Induced Metal–Insulator Transition of Magnetic SrRuO3 Single Layer in SrRuO3/SrTiO3 Superlattice. Applied Sciences. 2018; 8(11):2151. https://doi.org/10.3390/app8112151
Chicago/Turabian StyleHuang, Angus, Sheng-Hsiung Hung, and Horng-Tay Jeng. 2018. "Strain Induced Metal–Insulator Transition of Magnetic SrRuO3 Single Layer in SrRuO3/SrTiO3 Superlattice" Applied Sciences 8, no. 11: 2151. https://doi.org/10.3390/app8112151
APA StyleHuang, A., Hung, S. -H., & Jeng, H. -T. (2018). Strain Induced Metal–Insulator Transition of Magnetic SrRuO3 Single Layer in SrRuO3/SrTiO3 Superlattice. Applied Sciences, 8(11), 2151. https://doi.org/10.3390/app8112151