Predictive Modeling of VO2max Based on 20 m Shuttle Run Test for Young Healthy People
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Field Assessment of VO2max
2.3. Predictive Methods
- The ordinary least squares (OLS) regression used a popular method of least squares, in which weights are calculated by minimizing the sum of the squared errors. The function lm to calculate the OLS was used. The criterion of performance takes the form:
- The Ridge model was calculated using the function lm.ridge from the “MASS” package. In Ridge regression [44], the criterion of performance includes a penalty for increased weights and takes the form:
- Multilayer Percleptron (MLP)—to implement these methods, the RSNNS package was used [45]. Apart from the linear models, the artificial neural network was used. Two types of ANNs were applied: a multi-layer perceptron (MLP). MLPs are fully connected feedforward networks, and the most popular architecture used in applications. Training was performed by error backpropagation and logistical function as an activation function of hidden layers was used.
- Artificial neural networks with a radial basis function (RBF)—the application of the RBF network is similar to MLP and used the RSNNS package [45]. The RBF are also feed-forward networks, but they have only one hidden layer. This network performs a linear combination of radially basis functions.
- Stepwise Forward Regression—The forward selection procedure begins with an equation which contains only a free expression. The first variable in the equation is the one which has the highest correlation with the variable. If the coefficient of regression of the variable differs significantly from zero, the variable remains in the equation and another variable is added. The second variable introduced into the equation is the one which has the highest correlation with ( has been adjusted for the effect of the first variable). If the regression coefficient is significant, adding the next variable is implemented in the same way.
- Stepwise Backward Regression—The backward elimination procedure begins with an equation with all variables. One variable is removed in each step. The variables are neglected depending on their contribution to a reduction in the total error of squares. The variable with the lowest contribution to the reduction in the total error of squares, i.e., the one which has the smallest t-test in the equation, will be removed as the first one. Assuming that there is one or more variables with negligible t-tests, the procedure consists of removing all variables with the lowest negligible t-test. The procedure is completed when all t-tests are significant or when all variables have been removed.
- Stepwise Regression (bidirection)—The stepwise method combines the action mechanisms of both abovementioned methods. Generally, it is a forward selection procedure which contains an extra mechanism that enables the removal of variables on any stage, similarly to backward selection. In this procedure, the variable which was earlier added to the equation can be removed later. Calculations made to add and remove variables are the same as in the forward and backward procedures.
3. Results
4. Discussion
- a large research group representing the population,
- VO2max measurements made using direct methods,
- the use of a large set of variables to determine the optimal predictors for VO2max estimation,
- and obtaining a relatively small VO2max estimation error.
Author Contributions
Funding
Conflicts of Interest
Ethical Standards
References
- Castro-Piñero, J.; Perez-Bey, A.; Segura-Jiménez, V.; Aparicio, V.A.; Gómez-Martínez, S.; Izquierdo-Gomez, R.; Marcos, A.; Ruiz, J.R.; Marcos, A.; Castro-Piñero, J.; et al. Cardiorespiratory fitness cutoff points for early detection of present and future cardiovascular risk in children: A 2-year follow-up study. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2017; Volume 92, pp. 1753–1762. [Google Scholar]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: A scientific statement from the American Heart Association. Circulation 2016, 134, 653–699. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Daza, F.; González-Jiménez, E.; Schmidt-RioValle, J.; González-Ruíz, K.; Correa-Bautista, J.E. Cardiorespiratory Fitness, Adiposity, and Cardiometabolic Risk Factors in Schoolchildren: The FUPRECOL Study. West. J. Nurs. Res. 2017, 39, 1311–1329. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.S.; Sui, X.; O’Connor, D.P.; Church, T.S.; Lee, D.C.; Artero, E.G.; Blair, S.N. Longitudinal cardiorespiratory fitness algorithms for clinical settings. Am. J. Prev. Med. 2012, 43, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.J. Exploring the utility of cardiorespiratory fitness as a population health surveillance indicator for children and youth: An international analysis of results from the 20-m shuttle run test. Appl. Physiol. Nutr. Metab. 2018, 43, 211. [Google Scholar] [CrossRef] [PubMed]
- Black, N.E.; Vehrs, P.R.; Fellingham, G.W.; George, J.D.; Hager, R. Prediction of VO2max in Children and Adolescents Using Exercise Testing and Physical Activity Questionnaire Data. Res. Q. Exerc. Sport 2016, 87, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Gander, J.C.; Sui, X.; Hébert, J.R.; Hazlett, L.J.; Cai, B.; Lavie, C.J.; Blair, S.N. Association of cardiorespiratory fitness with coronary heart disease in asymptomatic men. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2015; Volume 90, pp. 1372–1379. [Google Scholar]
- Ahmed, H.M.; Al-Mallah, M.H.; McEvoy, J.W.; Nasir, K.; Blumenthal, R.S.; Jones, S.R.; Brawner, C.A.; Keteyian, S.J.; Blaha, M.J. Maximal exercise testing variables and 10-year survival: Fitness risk score derivation from the FIT Project. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2015; Volume 90, pp. 346–355. [Google Scholar]
- Brawner, C.A.; Al-Mallah, M.H.; Ehrman, J.K.; Qureshi, W.T.; Blaha, M.J.; Keteyian, S.J. Change in maximal exercise capacity is associated with survival in men and women. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2017; Volume 92, pp. 383–390. [Google Scholar]
- De Lannoy, L.; Sui, X.; Lavie, C.J.; Blair, S.N.; Ross, R. Change in Submaximal Cardiorespiratory Fitness and All-Cause Mortality. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Gray, B.J.; Stephens, J.W.; Williams, S.P.; Davies, C.A.; Turner, D.; Bracken, R.M.; Group, P.S.G. Cardiorespiratory fitness is a stronger indicator of cardiometabolic risk factors and risk prediction than self-reported physical activity levels. Diabetes Vasc. Disease Res. 2015, 12, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. Jama 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Barlow, C.E.; LaMonte, M.J.; FitzGerald, S.J.; Kampert, J.B.; Perrin, J.L.; Blair, S.N. Cardiorespiratory fitness is an independent predictor of hypertension incidence among initially normotensive healthy women. Am. J. Epidemiol. 2005, 163, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.R.; Werneck, A.O.; Collings, P.J.; Ohara, D.; Fernandes, R.A.; Barbosa, D.S.; Ronque, E.R.; Sardinha, L.B.; Cyrino, E.S. Cardiorespiratory fitness effect may be under-estimated in ’fat but fit’ hypothesis studies. Ann. Hum. Biol. 2017, 44, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.; Oliveira, N.L.; Aires, L.; Mota, J.; Oliveira, J.; Ribeiro, J.C. Calculation and validation of models for estimating VO2max from the 20-m shuttle run test in children and adolescents. Arch. Exerc. Health Dis. 2012, 3, 145–152. [Google Scholar] [CrossRef]
- Ling, J.C.Y.; Mohamed, M.N.A.; Jalaludin, M.Y.; Rampal, S.; Zaharan, N.L.; Mohamed, Z. Determinants of high fasting insulin and insulin resistance among overweight/obese adolescents. Sci. Rep. 2016, 6, 36270. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kuk, J.L.; Katzmarzyk, P.T.; Blair, S.N.; Church, T.S.; Ross, R. Cardiorespiratory fitness attenuates metabolic risk independent of abdominal subcutaneous and visceral fat in men. Diabetes Care 2005, 28, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Barlow, C.E.; DeFina, L.F.; Radford, N.B.; Berry, J.D.; Cooper, K.H.; Haskell, W.L.; Jones, L.W.; Lakoski, S.G. Cardiorespiratory fitness and long-term survival in “low-risk” adults. J. Am. Heart Assoc. 2012, 1, e001354. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Burtscher, M. Survival of the fittest: VO2max, a key predictor of longevity? Front. Biosci. 2018, 23, 1505–1516. [Google Scholar] [CrossRef]
- Majid, H.A.; Amiri, M.; Azmi, N.M.; Su, T.T.; Jalaludin, M.Y.; Al-Sadat, N. Physical activity, body composition and lipids changes in adolescents: Analysis from the MyHeART Study. Sci. Rep. 2016, 6, 30544. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.B.; Miyatake, N.; Higuchi, M.; Miyachi, M.; Ishikawa-Takata, K.; Tabata, I. Predicting VO2max with an objectively measured physical activity in Japanese women. Med. Sci. Sports Exerc. 2010, 42, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Agostinis-Sobrinho, C.A.; Ruiz, J.R.; Moreira, C.; Abreu, S.; Luís, L.; Oliveira-Santos, J.; Mota, J.; Santos, R. Cardiorespiratory fitness and inflammatory profile on cardiometabolic risk in adolescents from the LabMed Physical Activity Study. Eur. J. Appl. Physiol. 2017, 117, 2271–2279. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Banerjee, A.K.; Das, P.; Debnath, P. A regression equation for the estimation of maximum oxygen uptake in Nepalese adult females. Asian J. Sports Med. 2010, 1, 41. [Google Scholar] [CrossRef] [PubMed]
- Pescatello, L.S.; Arena, R.; Riebe, D.; Thompson, P.D. ACSMs Guidelines for Exercise Testing and Prescription, 9th ed.; Wolters Kluwer/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Abut, F.; Akay, M.F. Machine learning and statistical methods for the prediction of maximal oxygen uptake: Recent advances. Med. Devices 2015, 8, 369. [Google Scholar]
- Mayorga-Vega, D.; Aguilar-Soto, P.; Viciana, J. Criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness: A meta-analysis. J. Sports Sci. Med. 2015, 14, 536. [Google Scholar] [PubMed]
- Zou, Z.; Chen, P.; Yang, Y.; Xiao, M.; Wang, Z. Relationships among anthropometric characteristics, muscular fitness, and sprint performance in adolescents. Isokinet. Exerc. Sci. 2018, 26, 89–94. [Google Scholar] [CrossRef]
- Magutah, K. Cardio-respiratory fitness markers among Kenyan university students using a 20 m shuttle run test (SRT). Afr. Health Sci. 2013, 13, 10–16. [Google Scholar] [PubMed]
- Abut, F.; Akay, M.F. Determination of the variables affecting the maximal oxygen uptake of cross-country skiers by using machine learning and feature selection algorithms. In Proceedings of the 2015 23th Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey, 16–19 May 2015; pp. 156–159. [Google Scholar]
- Mahar, M.T.; Guerieri, A.M.; Hanna, M.S.; Kemble, C.D. Estimation of aerobic fitness from 20-m multistage shuttle run test performance. Am. J. Prev. Med. 2011, 41, S117–S123. [Google Scholar] [CrossRef] [PubMed]
- Akay, M.F.; Ghahremanlou, N.; Aktürk, E.; George, J.; Aktarla, E. Performance comparison of different regression methods for VO2max prediction. In Proceedings of the 7th International Symposium on Electrical and Electronics Engineering and Computer Systems, Gemikonagi, North Cyprus, 29–30 November 2012; pp. 7–11. [Google Scholar]
- Aktürk, E. Prediction of Maximal Oxygen Uptake Using Machine Learning Methods Combined with Feature Selection. Master’s Thesis, Cukurova University, Adana, Turkey, 2014. [Google Scholar]
- Aktürk, E.; Akay, M.F. Prediction of maximal oxygen uptake using multilayer perceptron combined with feature selection. In Proceedings of the 7th Engineering and Technology Symposium, Ankara, Turkey, 15–16 May 2014; pp. 3–6. [Google Scholar]
- Akay, M.F.; Özsert, G.; George, J. Prediction of maximal oxygen uptake using support vector machines from submaximal data. DEÜ Eng. Fac. Eng. Sci. J. 2014, 16, 42–48. [Google Scholar]
- Fitchett, M. Predictability of VO2 max from submaximal cycle ergometer and bench stepping tests. Br. J. Sports Med. 1985, 19, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Van Horn, L.; Cuomo, M.; Huntbach, S.; O’Donel, A.; Mullin, C.; Sanders, J.; Braun, W. Comparison of Astrand VO2 Max Prediction to a Graded Leg Ergometry VO2 Max Test in Endurance Athletes. Int. J. Exerc. Sci. Conf. Proc. 2016, 9, 104. [Google Scholar]
- World Health Organization. Waist Circumference and Waist-Hip Ratio, Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Smolarczyk, M.; Wiśniewski, A.; Czajkowska, A.; Kęska, A.; Tkaczyk, J.; Milde, K.; Norkowski, H.; Gajewski, J.; Trajdos, A.; Majchrzak, A. The physique and body composition of students studying physical education: A preliminary report. Pediatr. Endocrinol. Diabetes Metab. 2012, 18, 27–32. [Google Scholar] [PubMed]
- Zwierzchowska, A.; Grabara, M.; Palica, D.; Zając, A. BMI and BAI as markers of obesity in a Caucasian population. Obes. Facts 2013, 6, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Leger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Gore, C. Physiological Test for Elite Athletes. Australian Sports Commission; Human Kinetics: Champaign, IL, USA, 2000. [Google Scholar]
- Stojanovic, M.D.; Calleja-Gonzalez, J.; Mikic, M.; Madic, D.M.; Drid, P.; Vuckovic, I.; Ostojic, S.M. Accuracy and Criterion-Related Validity of the 20-M Shuttle Run Test in Well-Trained Young Basketball Players. Montenegrin J. Sports Sci. Med. 2016, 5, 5–10. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Bergmeir, C.; Benítez, J.M. Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS. J. Stat. Softw. 2012, 46, 1–26. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. Unsupervised learning. In The Elements of Statistical Learning; Springer: Berlin, Germany, 2009; pp. 485–585. [Google Scholar]
- Chatterjee, S.; Hadi, A.S. Regression Analysis by Example; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 1996, 58, 267–288. [Google Scholar]
- Abut, F.; Akay, M.F.; George, J. Developing new VO2max prediction models from maximal, submaximal and questionnaire variables using support vector machines combined with feature selection. Comput. Biol. Med. 2016, 79, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Akay, M.F.; Abut, F.; Georg, J. Using support vector machines to predict maximal oxygen uptake with the help of questionnaire variables. In Proceedings of the International Symposium on Engineering, Artificial Intelligence and Applications, Kyrenia, North Cyprus, 5–7 November 2014; pp. 5–6. [Google Scholar]
- Bute, S.S.; Shete, A.N.; Khan, S. A Comparative Study of VO2 Max in Young Female Athletes and Non-Athletes. IOSR J. Sports Phys. Educ. 2014, 1, 2347–6737. [Google Scholar]
- Sarma, A.S. A comparative study of selected physiological variables between active and sedentary college students. Int. J. Phys. Educ. Sports Health 2017, 4, 100–102. [Google Scholar]
- Sánchez, G.F.L.; Díaz-Suárez, A.; Radziminski, Ł.; Jastrzębski, Z. Effects of a 12-week physical education program on the body composition of 10-and 11-year-old children. Sci. Sports 2017, 32, e155–e161. [Google Scholar]
- Sánchez, G.F.L.; Díaz-Suárez, A.; Radziminski, Ł.; Jastrzębski, Z. Effects of a 12-week-long program of vigorous-intensity physical activity on the body composition of 10-and 11-year-old children. J. Hum. Sport Exerc. 2017, 12, 236–245. [Google Scholar] [CrossRef]
- Dencker, M.; Thorsson, O.; Karlsson, M.K.; Lindén, C.; Eiberg, S.; Wollmer, P.; Andersen, L.B. Gender differences and determinants of aerobic fitness in children aged 8–11 years. Eur. J. Appl. Physiol. 2007, 99, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Eynon, N.; Morán, M.; Birk, R.; Lucia, A. The champions’ mitochondria: Is it genetically determined? A review on mitochondrial DNA and elite athletic performance. Physiol. Genom. 2011, 43, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.P.; Spina, R.J.; Holloszy, J.O.; Ehsani, A.A. Gender differences in the decline in aerobic capacity and its physiological determinants during the later decades of life. J. Appl. Physiol. 2006, 101, 938–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabmokhtari, R.; Khazani, A.; Bayati, M.; Barmaki, S.; Fallah, E. Relationship between Body Composition and Cardiorespiratory Fitness in Students at Postgraduate Level. Zahedan J. Res. Med. Sci. 2019, in press. [Google Scholar] [CrossRef]
- Gawali, U.P.; Bhutkar, M. Association between Cardio Respiratory Fitness and Sedentary Life Style. Int. J. Health Sci. Res. 2015, 5, 204–208. [Google Scholar]
- Paap, D.; Takken, T. Reference values for cardiopulmonary exercise testing in healthy adults: A systematic review. Expert Rev. Cardiovasc. Ther. 2014, 12, 1439–1453. [Google Scholar] [CrossRef] [PubMed]
- Herdy, A.H.; Uhlendorf, D. Reference values for cardiopulmonary exercise testing for sedentary and active men and women. Arq. Brasileiros Cardiol. 2011, 96, 54–59. [Google Scholar] [CrossRef]
- Górski, J. Fizjologiczne Podstawy Wysiłku Fizycznego; Wydawnictwo Lekarskie PZWL: Warsaw, Poland, 2001. [Google Scholar]
- Sharma, M.; Kamal, R.; Chawla, K. Correlation of body composition to aerobic capacity; A cross sectional study. Int. J. Appl. Res. 2016, 2, 38–42. [Google Scholar]
- Sun, G.; French, C.R.; Martin, G.R.; Younghusband, B.; Green, R.C.; Xie, Y.G.; Mathews, M.; Barron, J.R.; Fitzpatrick, D.G.; Gulliver, W.; et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am. J. Clin. Nutr. 2005, 81, 74–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, Y.A.; Oh, J.Y.; Lee, H. Comparison of the body adiposity index to body mass index in Korean women. Yonsei Med. J. 2014, 55, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A. Validity of 20 meter multi-stage shuttle run test for estimation of maximum oxygen uptake in female university students. Indian J. Physiol. Pharmacol. 2013, 57, 77–83. [Google Scholar] [PubMed]
- Machado, F.A.; Denadai, B.S. Predição da potência aeróbia (VO 2máx) de crianças e adolescentes em teste incremental na esteira rolante. Motriz: Revista de Educação Fisica 2013, 19, 126–132. [Google Scholar]
- Bandyopadhyay, A. Validity of 20 meter multi-stage shuttle run test for estimation of maximum oxygen uptake in male university students. Indian J. Physiol. Pharmacol. 2011, 55, 221–226. [Google Scholar] [PubMed]
- Da Costa, A.V.; da Cunha Costa, M.; de Oliveira, S.F.M.; de Albuquerque, F.L.; Guimarães, F.J.D.S.P.; Barbosa, T.M. Validation of an equation for estimating maximal oxygen consumption of nonexpert adult swimmers. Open Access J. Sports Med. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Abut, F.; Akay, M.F.; Yildiz, I.; George, J. Performance comparison of different machine learning methods for prediction of maximal oxygen uptake from submaximal data. In Proceedings of the Eighth Engineering and Technology Symposium, Ankara, Turkey, 14–15 May 2015; pp. 367–370. [Google Scholar]
- Lam, B.C.C.; Koh, G.C.H.; Chen, C.; Wong, M.T.K.; Fallows, S.J. Comparison of body mass index (BMI), body adiposity index (BAI), waist circumference (WC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS ONE 2015, 10, e0122985. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.W.; Atta, I.; Ibrahim, M.N.; Leghari, T.M.; Khan, Y.N.; Raza, J. Hyperinsulinemia and waist circumference in childhood metabolic syndrome. J. Coll Phys. Surg. Pak 2011, 21, 146–150. [Google Scholar]
- Wang, J.; Thornton, J.C.; Bari, S.; Williamson, B.; Gallagher, D.; Heymsfield, S.B.; Horlick, M.; Kotler, D.; Laferrère, B.; Mayer, L.; et al. Comparisons of waist circumferences measured at 4 sites. Am. J. Clin. Nutr. 2003, 77, 379–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, C.; Katzmarzyk, P.T. Variability in waist circumference measurements according to anatomic measurement site. Obesity 2009, 17, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A.; Booke, C.A.; Blöcker, T.; Kossel, E.; Goele, K.; Later, W.; Hitze, B.; Heller, M.; Glüer, C.C.; Müller, M.J. Measurement site for waist circumference affects its accuracy as an index of visceral and abdominal subcutaneous fat in a Caucasian population. J. Nutr. 2010, 140, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Hitze, B.; Bosy-Westphal, A.; Bielfeldt, F.; Settler, U.; Mönig, H.; Müller, M.J. Measurement of waist circumference at four different sites in children, adolescents, and young adults: Concordance and correlation with nutritional status as well as cardiometabolic risk factors. Obes. Facts 2008, 1, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Geliebter, A.; Atalayer, D.; Flancbaum, L.; Gibson, C.D. Comparison of body adiposity index (BAI) and BMI with estimations of % body fat in clinically severe obese women. Obesity 2013, 21, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, P.; Bedogni, G.; Heo, M.; Pietrobelli, A. Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. Int. J. Obes. 2013, 37, 943. [Google Scholar] [CrossRef] [PubMed]
- Sironi, A.; Petz, R.; De Marchi, D.; Buzzigoli, E.; Ciociaro, D.; Positano, V.; Lombardi, M.; Ferrannini, E.; Gastaldelli, A. Impact of increased visceral and cardiac fat on cardiometabolic risk and disease. Diabet. Med. 2012, 29, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Schutz, Y.; Kyle, U.; Pichard, C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 y. Int. J. Obes. 2002, 26, 953. [Google Scholar] [CrossRef] [PubMed]
- Verbraecken, J.; Van de Heyning, P.; De Backer, W.; Van Gaal, L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metab.-Clin. Exp. 2006, 55, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Zafrir, B.; Salman, N.; Crespo-Leiro, M.G.; Anker, S.D.; Coats, A.J.; Ferrari, R.; Filippatos, G.; Maggioni, A.P.; Mebazaa, A.; Piepoli, M.F.; et al. Body surface area as a prognostic marker in chronic heart failure patients: Results from the Heart Failure Registry of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2016, 18, 859–868. [Google Scholar] [CrossRef] [PubMed]
Index | Equation |
---|---|
WHtR1 | |
WHtR2 | |
WHR1 | |
WHR2 | |
BMI | |
FMI | |
FFMI | |
BAI | |
BSA |
Variable | Description | Female () | Male () | All () |
---|---|---|---|---|
y | VO2max [mL·kg−1·min−1] | |||
Gender | — | — | ||
Distance [m] | ||||
[bpm] | ||||
HRR1 [bpm] | ||||
HRR4 [bpm] | ||||
Age [years] | ||||
Body weight [kg] | ||||
Body height [cm] | ||||
Waist1 cir. [cm] | ||||
Waist cir. [cm] | ||||
Hip cir. [cm] | ||||
WHtR | ||||
WHtR | ||||
WHR | ||||
WHR | ||||
BMI | ||||
FMI | ||||
FFMI | ||||
BAI | ||||
BSA | ||||
Fat [%] | ||||
FFM [%] | ||||
TBW [%] |
Method | Group | Predictors | Parameter | |
---|---|---|---|---|
All | —all predictors | — | ||
OLS | F | —all predictors | — | |
M | —all predictors | — | ||
All | —all predictors | |||
Ridge | F | —all predictors | ||
M | —all predictors | |||
All | —all predictors | |||
MLP | F | —all predictors | ||
M | —all predictors | |||
All | —all predictors | |||
RBF | F | —all predictors | ||
M | —all predictors |
Method | Group | Predictors | Parameter | |
---|---|---|---|---|
All | ||||
Lasso | F | |||
M | ||||
All | — | |||
OLS (forward) | F | — | ||
M | — | |||
All | — | |||
OLS (backward) | F | — | ||
M | — | |||
All | — | |||
OLS (bidirectional) | F | — | ||
M | — | |||
All | ||||
MLP (best subset) | F | |||
M | ||||
All | ||||
RBF (best subset) | F | |||
M |
Group | Method | Equation |
---|---|---|
Female | OLS (bidirectonal) | |
Male | OLS (forward) | |
All | OLS (forward) |
Author | Method | Group | |
---|---|---|---|
Our study | OLS | All (Female + Male) | 4.78 |
Mahar et al. [30] | OLS | All (Female + Male) | 6.17 |
Akay et al. [31] | MLP | All (Female + Male) | 3.73 |
Silva et al. [15] | OLS | All (Female + Male) | 4.90 |
Akturk et al. [32,33] | SVM | All (Female + Male) | 6.10 |
Akay et al. [34] | SVM | All (Female + Male) | 4.38 |
Our study | RBF | Female | 4.07 |
Chatterjee et al. [23] | OLS | Female | 0.53 |
Bandyopdhyay [66] | OLS | Female | 1.27 |
Our study | RBF | Male | 5.30 |
Machado and Demadai [67] | OLS | Male | 4.10 |
Bandyopdhyay [68] | OLS | Male | 1.41 |
Costa [69] | OLS | Male | 7.21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przednowek, K.; Barabasz, Z.; Zadarko-Domaradzka, M.; Przednowek, K.H.; Nizioł-Babiarz, E.; Huzarski, M.; Sibiga, K.; Dziadek, B.; Zadarko, E. Predictive Modeling of VO2max Based on 20 m Shuttle Run Test for Young Healthy People. Appl. Sci. 2018, 8, 2213. https://doi.org/10.3390/app8112213
Przednowek K, Barabasz Z, Zadarko-Domaradzka M, Przednowek KH, Nizioł-Babiarz E, Huzarski M, Sibiga K, Dziadek B, Zadarko E. Predictive Modeling of VO2max Based on 20 m Shuttle Run Test for Young Healthy People. Applied Sciences. 2018; 8(11):2213. https://doi.org/10.3390/app8112213
Chicago/Turabian StylePrzednowek, Krzysztof, Zbigniew Barabasz, Maria Zadarko-Domaradzka, Karolina H. Przednowek, Edyta Nizioł-Babiarz, Maciej Huzarski, Klaudia Sibiga, Bartosz Dziadek, and Emilian Zadarko. 2018. "Predictive Modeling of VO2max Based on 20 m Shuttle Run Test for Young Healthy People" Applied Sciences 8, no. 11: 2213. https://doi.org/10.3390/app8112213
APA StylePrzednowek, K., Barabasz, Z., Zadarko-Domaradzka, M., Przednowek, K. H., Nizioł-Babiarz, E., Huzarski, M., Sibiga, K., Dziadek, B., & Zadarko, E. (2018). Predictive Modeling of VO2max Based on 20 m Shuttle Run Test for Young Healthy People. Applied Sciences, 8(11), 2213. https://doi.org/10.3390/app8112213